

1

Master Project at the Department of Informatics

Master Project: Post-Fossil Cities

Mapping sensor input data to physical gameboard instances to create an

expandable gameboard

Professor: Prof. Dr. Lorenz M. Hilty

Supervisor: João Gonçalves

Authors: David Wyss (14-734-453) & Vincent Rüegge (15-700-966)

Prototype v2 Project Documentation. This report serves as documentation and

description of our second up and running prototype. It includes detailed descriptions and

pictures of all the prototype’s components and their respective subcomponents.

Additionally, the report presents the prototype’s limitations and potential future

improvements.

Setup David Wyss & Vincent Rüegge

 July 02, 2020

2

Table of Contents

1 Introduction 5

2 Hardware 6

2.1 Main Controller 6

2.2 Sensor Modules 6

2.3 Oracle 6

2.4 NFC Tags 6

2.5 Printed Circuit Boards (PCBs) 6

3 Software 9

3.1 Main Controller 9

3.2 Oracle 13

3.3 Training Dashboard 14

3.4 API Call Specification Dashboard 14

4 Manufacturing 15

4.1 Introduction 15

4.2 PCBs 15

4.3 Cases 15

5 Assembly 16

5.1 Introduction 16

5.2 Main Controller module 16

5.3 Oracle module 16

5.4 Sensor module 18

6 Setup 20

6.1 Software 20

6.2 Modules 20

6.3 Playing Cards 21

6.4 Training Process 21

6.5 API Call Specification 21

7 Challenges 23

8 Future Work 23

9 Pictures 25

Setup David Wyss & Vincent Rüegge

 July 02, 2020

3

9.1 Main Controller 25

9.2 Sensor Modules 30

9.3 Oracle Module 34

9.4 Training Dashboard 35

9.5 API Call Specification Dashboard 36

Setup David Wyss & Vincent Rüegge

 July 02, 2020

4

List of Figures

Figure 1: Modular design patterns __ 5

Figure 2: Main Controller PCB ___ 7

Figure 3: Sensor PCB ___ 8

Figure 4: Oracle PCB ___ 8

Figure 5: Mode Description ___ 9

Figure 6: Flow Chart: Main ___ 10

Figure 7: Flow Chart: Training __ 10

Figure 8: Flow Chart: Playing ___ 11

Figure 9: Command Description __ 12

Figure 10: Flow Chart: Receive Command __ 12

Figure 11: Training: Mode & Command Interaction Example______________________________________ 13

Figure 12: Playing: Mode & Command Interaction Example ______________________________________ 13

Setup David Wyss & Vincent Rüegge

 July 02, 2020

5

1 Introduction

This report serves as documentation and description of our second up and running prototype. It includes

detailed descriptions and pictures of all the prototype’s components and their respective subcomponents.

This includes (a) a Main Controller module to which the sensors can be connected, (b) Sensor modules on

which the cards can be played, (c) a separate module for the Oracle that accepts combinations of up to four

cards, (d) a Python-based UI for training, and (e) a Python-based UI to capture incoming game actions and

to specify and send the corresponding HTTP API calls.

Compared to the first prototype, the second prototype is built modularly. Instead of having one gameboard

with a fixed size, the second prototype allows for a variety of gameboard designs. Figure 1 represents the

modular design. The Main Controller (MC), the Sensor modules (S), and the Oracle (Oracle) can all be

placed individually on any gameboard. The size and shape of the gameboard are irrelevant and thus allow

for more flexibility.

Figure 1: Modular design patterns

Setup David Wyss & Vincent Rüegge

 July 02, 2020

6

2 Hardware

2.1 Main Controller

The Main Controller is the centrepiece of our second prototype. It maintains and controls the data flow

between the sensors and the connected device (usually a computer running e.g. the training dashboard).

Additionally, it saves the mapped data generated after training. A serial connection is established via either

Bluetooth (57600 baud, 8-N-1) or USB (57600 baud, 8-N-1).

It also includes three LEDs. A red LED (power) indicating whether the gameboard is connected to a power

source, a green LED (status) indicating whether the Main Controller is ready to train or play, and a blue

LED (communication) indicating whether a command was sent, or a valid command was received.

The current version allows for up to five Sensor modules to be connected to the Main Controller module

via USB-C.

2.2 Sensor Modules

Each sensor (PN532 NFC/RFID Sensor) is placed on a PCB in its own dedicated Sensor module. Each

module is then connected to the Main Controller module via USB-C. The sensors capture training and

playing actions and forward the information to the Main Controller to be processed.

Each Sensor module has two LEDs. A red LED (power) indicating whether the module is connected to a

power source, and a blue LED (communication) indicating whether a command was sent, or a valid

command was received.

2.3 Oracle

The Oracle is a separate module with its own ESP-32 . The rationale behind this design is the way the Oracle

handles sensor input. The Oracle can combine up to four sensor inputs and can forward the combination

whenever a change happens.

The Oracle module also includes seven LEDs. A red LED (power) indicating whether the Oracle module is

connected to a power source, a green LED (status) indicating whether the Oracle is ready to play, and a blue

LED (communication) indicating whether a command was sent, or a valid command was received.

Additionally, a blue LED is present for each sensor (communication) indicating whether a card is currently

placed on and recognized by the sensor.

2.4 NFC Tags

Each playing card is equipped with an NFC Tag (Ntag213 13,56 MHz). The NFC Tag holds the card’s ID

which is captured by the sensor and forwarded to the Main Controller. The card ID is formatted in the

following fashion: CardID=xyz, wherein three digits are required (e.g. card ID 1 would be stored as

CardID=001 in plain text (english) format).

2.5 Printed Circuit Boards (PCBs)

2.5.1 Description

A Printed Circuit Board (PCB) electrically and physically connects various components without the need

for additional wiring. In our case, each module has its own custom PCB that allows for easy assembly as

Setup David Wyss & Vincent Rüegge

 July 02, 2020

7

well as reduced setup time and complexity. Additionally, having a digitalized PCB design simplifies

replication by enabling easy ordering of additional modules.

Our PCBs were designed using EasyEDA and ordered fully assembled from PCBWay.com and Quick-

Pick.ch.

2.5.2 Main Controller

The Main Controller PCB houses and provides mounting for the following components:

● NodeMCU ESP-32S

● Three LEDs (power, status, communication)

● Two MCP23016 I/O expanders (one for LEDs, one for sensors)

● Ten USB-C ports, to which Sensor modules can be connected

Figure 2: Main Controller PCB

Setup David Wyss & Vincent Rüegge

 July 02, 2020

8

2.5.3 Sensor Modules

The Sensor module PCB houses and provides mounting for the following components:

● PN532 NFC sensor

● Two LEDs (power, communication)

● One USB-C port to connect to the Main Controller

Figure 3: Sensor PCB

2.5.4 Oracle

The Oracle PCB houses and provides mounting for the following components:

● NodeMCU ESP-32S

● Four PN532 NFC sensors

● Three LEDs (power, status, communication)

● Four Sensor LEDs (communication)

● One MCP23016 I/O expander (sensors, LEDs)

Figure 4: Oracle PCB

Setup David Wyss & Vincent Rüegge

 July 02, 2020

9

3 Software

3.1 Main Controller

3.1.1 Modes

We designed the behaviour of our software in a mode-dependent way. In other words, depending on the

Main Controller’s current mode, there exists a predefined set of commands the user has access to. Thus, the

possibilities within a given mode are always clear, and no unexpected behaviour appears. Figure 5 describes

each mode in more detail, as well as its available commands. Figure 6 represents the interdependence of

the modes present in our main software component as well as its general flow for each step. Figure 7 and

Figure 8 represent the flow that is repeated for each step of the training and playing mode respectively.

Figure 5: Mode Description

Setup David Wyss & Vincent Rüegge

 July 02, 2020

10

Figure 6: Flow Chart: Main

Figure 7: Flow Chart: Training

Setup David Wyss & Vincent Rüegge

 July 02, 2020

11

Figure 8: Flow Chart: Playing

3.1.2 Sensor Types

The training dashboard allows the user to choose between two behaviour types for each Sensor module.

Firstly, there is a regular type, on which a user can place a card and remove it shortly afterwards; only one

API call will be sent out. Secondly, a combinatorial type exists; for this type, cards have to remain on the

Sensor module after playing them for as long as they shall be considered by the backend. A first API call is

sent when the card is placed. Once the card is removed, a second API call is sent letting the backend know

that the card was removed.

In the call sent by the Main Controller, the acronym RP stands for “regular play” and is one of three possible

message types; this simply occurs when a card is played on a regular Sensor module. The other two message

types are CP for “combinatorial play”, which occurs when a card is placed on a combinatorial Sensor module.

Lastly, there exists a message type CR for “combinatorial remove”, which occurs when a card is removed

from a combinatorial Sensor module.

3.1.3 Commands

Depending on the mode the Main Controller is currently in, the user has a predefined set of commands he

has access to. These commands are used to control the software. Figure 9 describes each command. Figure

10 represents the ‘Receive Command’ process from Figure 6 in more detail. This entails the process that

occurs upon receiving any input to the Main Controller.

Setup David Wyss & Vincent Rüegge

 July 02, 2020

12

Figure 9: Command Description

Figure 10: Flow Chart: Receive Command

Setup David Wyss & Vincent Rüegge

 July 02, 2020

13

3.1.4 Mode & Command Interactions

Example Training Sequence

Figure 11 shows an example command sequence as it might occur during the gameboard’s training process.

Figure 11: Training: Mode & Command Interaction Example

Example Playing Sequence

Figure 12 shows an example command sequence as it might occur during regular gameplay. Note that the

playing dashboard acknowledges each PLAY={...} command from the gameboard by returning a PLAY_OK

command.

Figure 12: Playing: Mode & Command Interaction Example

3.2 Oracle

The Oracle module software is based on the Main Controller software. However, its behaviour is not mode-

dependent; instead, the Oracle permanently runs in Playing mode after initialization.

In its functionality, the Oracle also differs from the Main Controller: Instead of sending an individual

message for every card that is placed, the Oracle sends the combination of currently placed cards in a single

message every time a card is added or removed. This message adheres to the following format:

Setup David Wyss & Vincent Rüegge

 July 02, 2020

14

ORACLE={w_x_y_z}, wherein w,x,y, and z are the four IDs of the cards that are currently placed on the

oracle. If less than four cards are present, the message gets shortened (e.g. ORACLE={7_52}). If the last

remaining card is removed, an empty message ORACLE={} is sent. The rationale behind this is to signal that

the Oracle shall currently not be considered by the backend.

In other words, the Oracle’s sensors are permanently of type combinatorial, and all sensor inputs are

condensed into a single message.

3.3 Training Dashboard

The training dashboard is a Python-/Kivy-based program that enables all the training-relevant

functionality. This includes (a) establishing a connection to the gameboard, (b) defining the names of the

Sensor modules, (c) choosing each Sensor module’s type (regular or combinatorial), (d) uploading the data to

the gameboard, and (e) optionally undoing the most recent step of the training process or (f) cancelling the

entire training process. Upon successful completion of the training process, the user can start playing the

game with the previously defined area names. For example, a user first connects his computer to the Main

Controller via USB or Bluetooth. He then specifies three areas, (1) Actions, (2) Buildings, and (3) Investors. He

activates each Sensor module with a card and chooses its type. Should the user make a mistake, he can undo

the most recent step of the training process. After specifying the areas, he uploads the mapping data to the

gameboard.

3.4 API Call Specification Dashboard

The API call specification dashboard is a Python-/Kivy-based program that enables all API call-relevant

functionality. This includes (a) establishing a connection to the gameboard, (b) entering the API endpoints,

(c) entering the API keys, (d) defining the format of the data to be sent with each API call, and (e) saving

and reloading the current settings. After specification, every playing action sends the area name, the card

ID, and the area type in the previously defined format to the API endpoint. This can be specified

individually for both the Main Controller and the Oracle.

For example, a user first connects his computer to the Main Controller via USB or Bluetooth. Then, he

specifies the API endpoint (e.g. https://post-fossil-cities.com/play) and the corresponding API key (e.g.

e3435g288fcdcsw8776dshbw). He then specifies the data format in which the area name, the card ID, and the

area type are forwarded (e.g. pfc_play_action=[AreaName]_[CardID]_[Type]). Now, the user can save the

specifications and keep the dashboard running in the background.

Assuming a player now plays the card with the ID 57 on the area named Actions, which is of type regular, a

message containing the data pfc_play_action=Actions_57_RP is sent to https://post-fossil-cities.com/play, using

e3435g288fcdcsw8776dshbw as the API key.

Setup David Wyss & Vincent Rüegge

 July 02, 2020

15

4 Manufacturing

4.1 Introduction

This chapter describes the manufacturing process for all the gameboard modules. It describes the

parameters for ordering components, as well as sources that were used for this prototype.

4.2 PCBs

For each of the three PCBs, multiple files are necessary for ordering production and assembly of additional

units. Firstly, the Gerber file (.zip) contains the basic board layout for production of the bare PCB.

Additionally, the Bill of Materials (BOM, .csv) contains the components needed for PCB assembly (e.g. USB

ports, IO expanders). Lastly, the Pick and Place file (.csv) describes each component’s location on the PCB.

Because we opted to use small scale SMD components, PCB assembly was also outsourced due to increased

complexity.

The PCBs used in the second prototype are of the following specifications:

● Layers: 2

● Thickness: 1.6mm

● Material: FR-4 TG130

● Surface Finish: HASL with lead

● Min. Track spacing: 6/6mil

● Silkscreen: White

● Min. Hole size: 0.3

● Finished Copper: 1 oz Cu

The PCBs used in our second prototype were ordered fully assembled from PCBWay.com and Quick-

Pick.ch.

4.3 Cases

The cases used for each of the gameboard modules were 3D printed using the University’s own Ultimaker

3 3D printer, located at the Tiny Makerspace (UZH Irchel).

They were printed using the following specifications:

● Material: PLA

● Print speed: 70mm/s

● Support: enabled

● Infill: 30%

● Printing temperature: 200°C

For each case, we include two files:

● .skp file (Google SketchUp): The original file, which can be edited to accommodate additional

changes.

● .stl file: The file used for 3D printing with a slicer program (e.g. Ultimaker Cura), using the

specifications described above.

Setup David Wyss & Vincent Rüegge

 July 02, 2020

16

5 Assembly

5.1 Introduction

This chapter describes, for each module, what parts are needed and how it is assembled. Each module is

composed of multiple components: A 3D printed case, a PCB, and, for the Oracle and Main Controller

modules, an ESP32 controller.

5.2 Main Controller module

The Main Controller module is housed in a 3D printed case. It contains the Main Controller PCB, to which

an ESP32 controller is mounted. The assembly process is as follows:

● Solder the three LEDs to the PCB, making sure they are in the correct order (red, green, blue from

left to right). Also make sure their polarity matches the indications on the PCB.

● Mount the NodeMCU ESP32-S to the PCB, being careful to align its pins leaving open the topmost

row (shown in red in the picture below). Also make sure the USB connector is pointing away from

the LEDs (shown in blue in the picture below).

● Mount the PCB to the case using four 5-8mm long M3 screws.

5.3 Oracle module

The Oracle module is housed in a 3D printed case. It contains the Oracle PCB, to which an ESP32 controller

is mounted. Also, four PN532 NFC sensors are mounted to the Oracle PCB. The assembly process is as

follows:

Setup David Wyss & Vincent Rüegge

 July 02, 2020

17

● Solder the three main LEDs to the PCB, making sure they are in the correct order (red, green, blue

from left to right). Also make sure their polarity matches the indications on the PCB.

● Solder the four blue sensor LEDs to the PCB. Make sure their polarity matches the indications on

the PCB.

● Mount the NodeMCU ESP32-S to the PCB, exactly as shown for the Main Controller (picture above).

● Connect the four PN532 NFC sensors to the PCB so their outlines match the white markings on the

PCB.

● For each NFC sensor, install a 10mm nylon standoff with two M3 screws as shown in the first

picture below.

● Set each sensor to SPI mode with the white DIP switches, as shown in blue in the second picture

below. We also opted to cover the onboard LED with black tape.

● Mount the PCB to the case using three 5-8mm long M3 screws.

Setup David Wyss & Vincent Rüegge

 July 02, 2020

18

5.4 Sensor module

Each Sensor module is housed in a 3D printed case. It contains the Sensor PCB, to which a PN532 NFC

sensor is mounted. The assembly process is as follows:

● Solder the two LEDs to the PCB (red for PWR, blue for COM). Also make sure their polarity matches

the indications on the PCB.

● Connect the PN532 NFC sensor to the PCB so its outlines matches the white markings on the PCB.

● For the NFC sensor, install a 10mm nylon standoff with two M3 screws as shown in the first picture

below.

Setup David Wyss & Vincent Rüegge

 July 02, 2020

19

● Set the sensor to SPI mode with the white DIP switches, as shown for the Oracle module. We also

opted to cover the onboard LED with black tape.

● Mount the PCB to the case using two 5-8mm long M3 screws.

Setup David Wyss & Vincent Rüegge

 July 02, 2020

20

6 Setup

6.1 Software

Training and API specification software
• To run the training dashboard, using any Python development software (we chose to use PyCharm),

run the file layout.py located in the trainingDashboard folder, using a Python 3.7 interpreter. You may

need to create a configuration by pressing the “Edit configurations” button in the top right corner,

then pressing the + button to add a new configuration. Choose the layout.py file as the script path,

and Python 3.7 as the interpreter.

• To run the API specification dashboard, using any Python development software (we chose to use

PyCharm), run the file APISpecification.py located in the APISpecification folder, using a Python 3.7

interpreter. You may need to create a configuration by pressing the “Edit configurations” button in

the top right corner, then pressing the + button to add a new configuration. Choose the layout.py

file as the script path, and Python 3.7 as the interpreter.

ESP32 Software

• Connect the ESP32 to your computer using a micro USB cable.

• Using the free editor Atom with the PlatformIO plugin, open the folder of the ESP32 software you

want to install (either ESP32 Game Board or ESP32 Oracle).

• The platformio.ini file specifies the upload configuration; if using different ESP32 modules, setting

may need to be adapted here.

• Change the upload_port parameter to the respective port name on your computer that the ESP32 is

connected to.

• Within Atom with PlatformIO enabled, press the “Upload” button on the top left (third button from

the top, which looks like an arrow facing to the right)

• The software will then be uploaded to the ESP32. Upon completion, you may close Atom and start

using the module your ESP32 is used in.

6.2 Modules

Connection

● Connect up to five Sensor modules as you need to the Main Controller using USB-C cables. The

cables have to be connected in numerical order, starting from port 1 without skipping any ports.

Due to hardware constraints, no more than five Sensor modules are currently usable; more

information on limitations in the section Future Work.

● For the Oracle module, nothing needs to be connected.

Power

● To power the Main Controller, connect a power bank or powered micro USB cable to the port

opposite of the LEDs on the Main Controller. Note: Do not use any USB extensions or USB ports

that cannot provide adequate power (e.g. from smartphones).

● To power the Oracle module, connect a power bank or powered micro USB cable to the built-in

USB extension. Note: Do not use any USB extensions or USB ports that cannot provide adequate

power (e.g. from smartphones).

● Both Main Controller and Oracle Modules will turn on and initialize automatically once power is

supplied.

Setup David Wyss & Vincent Rüegge

 July 02, 2020

21

6.3 Playing Cards

Download the application and label the cards

● Download the NFC Tools application (Android, iOS) and launch it

● Switch to the Write tab

● Press Add a record

● Press Text and write CardID=xyz in the dedicated entry field (where x, y, and z represent the card’s

ID). Three digits are required (e.g. card ID 1 would be stored as CardID=001)

● Press OK and write the contents to the NFC tag.

6.4 Training Process

Connection

● Turn on the Main Controller and connect it to your computer via USB or Bluetooth

● Open the training dashboard application

● Wait until the Main Controller’s status LED (green) stays lit

● Select the correct device from the dropdown menu in the top right corner, labeled Select device...

Training

● Press the “Start Training” button and wait for the Main Controller to acknowledge it by flashing

the communication LED (blue)

● Place a card on any area, and enter the corresponding area name when prompted

● Press Regular for a check-in / check-out sensor, or Combinatorial for a check-in / leave-in sensor.

Wait for the Main Controller to acknowledge it by flashing the communication LED (blue)

● Repeat the previous two steps for each area you wish to specify

● Optional: Tick the checkbox in the top left corner named Areas to get a list of all already trained

sensors

● Optional: Tick the checkbox in the top right corner named Log to get a list of all the actions

performed via the training dashboard

Completion

● Once done, press “Finish and Upload”

● Wait for the Main Controller to acknowledge the end of the training process by flashing the

communication LED (blue)

● After the training dashboard indicates that the program may be closed, the Main Controller is

ready to start playing

Undo / Cancel

● Press the Undo button in the bottom left corner to delete the most recently trained area

● Press the Cancel Training button in the bottom right corner to discard all training data and start

over

6.5 API Call Specification

Connection

● Turn on the Main Controller or Oracle module and connect it to your computer via USB or

Bluetooth

Setup David Wyss & Vincent Rüegge

 July 02, 2020

22

● Open the API Call Specification dashboard application

● Wait until the Main Controller’s / Oracle module’s status LED (green) stays lit

● Choose which device you want to specify the API calls for by choosing the appropriate screen in

the bottom right corner (Areas or Oracle)

● Select the correct device from the dropdown menu in the top right corner

Specification and save

● Enter the API key

● Enter the API endpoint

● Specify the data format. You can add card IDs, area names, sensor types, and card combinations

by pressing the respective buttons (Add CardId, Add Area, Add Type, Add Card Combination

● Press Save & Apply to save the current settings and apply them to incoming play actions

Load settings

● Press Load current settings in the bottom left corner to load the currently saved specifications in the

respective fields. Only empty fields will be overwritten by loading current settings.

Setup David Wyss & Vincent Rüegge

 July 02, 2020

23

7 Challenges

Over the course of our master project, we faced various challenges spanning from software to hardware to

a global crisis.

From a software perspective, the choice of the dashboard design language (Python Kivy) revealed itself to

be suitable for the scope of this project, but not recommendable for more sophisticated applications.

Additionally, hardware-specific libraries for the ESP32 had to be significantly altered to fulfill our intended

purpose (e.g. the NFC sensors’ library had to be adapted to get up to five sensors working together).

From a hardware perspective, designing the PCBs proved a significant challenge as neither of us had any

experience on that aspect of the project. All things considered, the PCB design was a crucial part of the

project, as the second prototype’s functionality and design are based on having a working PCB for each

module. Failing to achieve this would have resulted in a significant deviation from previously established

requirements (e.g. small size and user-friendly, modular design).

All of these challenges were additionally embedded in the global COVID-19 crisis. This lead to significant

delays in the production and delivery of multiple hardware components, which postponed the completion

of the entire project by several months. Therefore, in the closing stages, project management became

increasingly important.

8 Future Work

The second post-fossil cities game prototype offers a first connection between the software running in the

background and the user playing the game. Additionally, it allows for great flexibility and is able to cope

with various use cases. Different numbers of sensors can be connected, the Oracle module can optionally

be incorporated, two different sensor types are available (regular or combinatorial), the area names can be

specified, as well as the outgoing API calls for both the Main Controller and the Oracle.

Regarding the maximum number of connectable sensors, we reached practical hardware limitations with

only five sensors as opposed to ten that were initially planned. This is not caused by our custom PCB, but

by the used PN532 sensor boards themselves, which were not designed by us. As they communicate using

the SPI protocol, all sensors utilise a single MISO (Master In Slave Out) line to send data to the ESP32.

However, the sensors’ hardware design does not permit inactive sensors to leave the MISO line unchanged,

instead forcing them to pull its voltage towards 0V. This behaviour depends on how many sensors are

connected; the more are connected, the more difficult it becomes for any active sensor to send data to the

ESP32. Adding an additional pull-up resistor between MISO and the board’s 5V supply allows

communication to work reliably with up to five sensors, however connecting any more will prohibit all

sensors from sending data back to the ESP32. There are multiple ways of redesigning the hardware in order

to overcome this issue including, but not limited to, the following:

● Using different SPI compatible NFC sensors that are capable of leaving the MISO line floating (this

would require redesigning the Sensor module PCBs)

● Redesigning the Sensor module PCBs to directly include an NFC sensor, bypassing the need for a

prefabricated sensor board

● Using an I²C controlled switch, (e.g. ADG728BRUZ) to dynamically assign the MISO line to the

active sensor (this would require redesigning the Main Controller PCB as well as adapting the main

controller’s software, which may impact possible playing speed)

Nevertheless, the prototype can still be expanded and future work can use it (or certain components) as a

baseline to build upon. Furthermore, a database could be connected to the gameboard and incoming

Setup David Wyss & Vincent Rüegge

 July 02, 2020

24

playing data could be captured and stored. This would allow for future analyses of the playing data.

Additionally, hardware changes such as the inclusion of different types of NFC cards could be made.

Setup David Wyss & Vincent Rüegge

 July 02, 2020

25

9 Pictures

9.1 Main Controller

Setup David Wyss & Vincent Rüegge

 July 02, 2020

26

Setup David Wyss & Vincent Rüegge

 July 02, 2020

27

Setup David Wyss & Vincent Rüegge

 July 02, 2020

28

Setup David Wyss & Vincent Rüegge

 July 02, 2020

29

Setup David Wyss & Vincent Rüegge

 July 02, 2020

30

9.2 Sensor Modules

Setup David Wyss & Vincent Rüegge

 July 02, 2020

31

Setup David Wyss & Vincent Rüegge

 July 02, 2020

32

Setup David Wyss & Vincent Rüegge

 July 02, 2020

33

Setup David Wyss & Vincent Rüegge

 July 02, 2020

34

9.3 Oracle Module

Setup David Wyss & Vincent Rüegge

 July 02, 2020

35

9.4 Training Dashboard

Setup David Wyss & Vincent Rüegge

 July 02, 2020

36

9.5 API Call Specification Dashboard

Setup David Wyss & Vincent Rüegge

 July 02, 2020

37

Setup David Wyss & Vincent Rüegge

 July 02, 2020

38

