
Department of Informatics, University of Zürich

BSc Thesis

A GPU-enabled Single-Point
Incremental Fourier Transform

Johann Schwabe
Matrikelnummer: 17-726-724

Email: johann.schwabe@uzh.ch

July 26, 2020
supervised by Prof. Dr. M. Böhlen and M. Saad

dedicated to Science

Acknowledgements

I would like to express my gratitude to my supervisor Muhammad Saad from whom I could
learn much and who guided me through this thesis.

I would like to thank Prof. Dr. Michael H. Böhlen and the Database Technology Group for
making this project possible.

I would like thank Dr. C. Schwabe for thoroughly reviewing the thesis and providing valuable
feedback.

i

Abstract

Although Fourier transforms are widely used, special implementations are still being devel-
oped for high performance applications. For use in a streaming environment, the Single Point
Incremental Fourier Transform (SPIFT) was recently proposed (Saad et al. 2020). In SPIFT
the main computational bottleneck is the incremental addition, where the Single Point Fourier
Transform of each new datapoint is integrated into the previous result. Two key optimizations
to speed up SPIFT were introduced and tested. Firstly, GPUs are used to efficiently sum the
Single Point Fourier Transforms of the individual datapoints to the final result. Secondly, Sin-
gle Point Fourier Transform of the different datapoints with the same shift are combined using
an aggregation matrix instead of individually being integrated into the resultant image. Five
different implementations combining these two optimizations were evaluated. Both optimiza-
tions are crucial and are together able to increase the throughput on tested matrix dimensions
by three orders of magnitude.

Zusammenfassung

Obwohl die Fourier-Transformation weit verbreitet ist, werden für Hochleistungsanwendun-
gen noch immer spezielle Implementierungen entwickelt. Für den Einsatz in einer Streaming-
Umgebung wurde kürzlich die Single Point Incremental Fourier Transform (SPIFT) vorgeschla-
gen (Saad et al. 2020). Bei SPIFT liegt der Hauptengpass bei der Berechnung des letzten
Schritts, bei dem die Single Point Fourier Transformation jedes neuen Datenpunkts in das
Zwischenergebnis integriert wird. Zwei wichtige Optimierungen zur Beschleunigung von
SPIFT wurden eingeführt und getestet. Erstens werden GPUs verwendet, um die Single
Point Fourier Transformationen der einzelnen Datenpunkte effizient zum Endergebnis zu sum-
mieren. Zweitens werden mehrere gleichartige Single Point Fourier Transformationen, die aus
verschiedenen Datenpunkten berechnet wurden, in einer Aggregationsmatrix zusammenge-
fasst, anstatt einzeln in das resultierende Bild integriert zu werden. Fünf verschiedene Imple-
mentierungen, die diese beiden Optimierungen kombinieren, wurden evaluiert. Beide Opti-
mierungen sind entscheidend und können zusammen den Durchsatz um mehrere Größenord-
nungen erhöhen.

iii

Contents

1 Introduction 1

2 Background 2
2.1 Fast Fourier Transform vs Single Point Incremental Fourier Transform 2
2.2 SPIFT . 2
2.3 Comparing CPU and GPU . 6
2.4 GPU Thread model . 7
2.5 GPU Memory model . 9
2.6 Example: Matrix Product . 10

3 Experimental Setup 12
3.1 Hardware . 12
3.2 Software . 12
3.3 Dataset . 12
3.4 Experimental Setup . 13
3.5 Evaluation of data . 13

4 Results 15
4.1 General implementation structure . 15
4.2 Kernels . 16

4.2.1 General kernel information . 16
4.2.2 Update Kernels . 16
4.2.3 Row Shift Kernel . 18
4.2.4 Column Shift Kernel . 19
4.2.5 SumResults & DivideResult . 20

4.3 Implementations . 20
4.3.1 Unsynchronized approach . 20
4.3.2 Block update . 21
4.3.3 GPU Parallel updates . 21
4.3.4 Queued Approach . 23
4.3.5 CPU based Implementation . 25

4.4 Execution times . 25
4.4.1 Overview . 25
4.4.2 CPU-based approach . 25
4.4.3 Unsynchronized approach . 26
4.4.4 Unsynchronized approach vs CPU based approach 26

iv

5 Discussion 32
5.1 Fourier transforms in a streaming environment 32
5.2 Approaches . 33

5.2.1 CPU based approach . 33
5.2.2 Unsynchronized Approach . 34
5.2.3 Block Update approach . 34
5.2.4 Queued Approach . 35
5.2.5 GPU parallel approach . 35

6 Conclusion 37

7 Appendix 39

v

List of Figures

2.1 Illustrating the GPU-Thread model . 8
2.2 Final thread model of the matrix product . 11

4.1 Miniature thread and memory model with a blockDim of 5x1x1 and a gridDim
of 3x3x1 . 17

4.2 Influence of the blockDim on the execution time for both update kernels. Ex-
ample using 50 Fourier threads, a result matrix of 4096x4096, 6 GPUs and
20482 datapoints . 18

4.3 Processing steps in the unsynchronized approach 22
4.4 Processing steps in the GPU Parallel Updates approach 23
4.5 Processing steps in the Queued approach . 24
4.6 Influence of the number of threads processing steps 1-3 on execution time of

the CPU based approach . 27
4.7 Influence of the number of threads updating the matrices on the execution time

in the CPU-only approach . 28
4.8 Influence of the number of threads processing steps 1-3 on execution time of

the Unsynchronized approach . 29
4.9 Influence of the number of GPUs updating the matrices on the execution time

in the Unsynchronized approach . 30
4.10 Time per matrix update in CPU based approach and unsynchronized approach 31

vi

List of Tables

2.1 The 8 x 8 twiddle factor matrix L2,3. Shift type: "row shift", shift index: 3,
shift vector: row 0 . 3

3.1 Description of the testing server . 12

4.1 Comparison of the five algorithms regarding their use of common kernels . . 15
4.2 Compute time per datapoint on different matrix dimensions using different

implementations . 31

vii

List of Algorithms

1 isRowShift(ut, vt) (Saad et al. 2020) 4
2 ShiftIndex(ut, vt, isRowSh) (Saad et al. 2020) 4
3 ComputeVector(ut, vt, vist, isRowSh, N) (Saad et al. 2020) 5
4 IncUpdate(It−1, q, isRowSh, p, N) (Saad et al. 2020) 5

5 Row shift update kernel . 19
6 Row shift update kernel . 20

viii

1 Introduction

In radio astronomy, sky objects such as stars or galaxies are not observed directly. Instead
an array of radio telescopes capture the incoming radio waves for 9 to 12 hours. Until now,
sky images are only computed once the observation is finished and all data has been collected
into a visibility grid. To transform this data into an image a standard 2D Fourier like the Fast
Fourier transform (FFT) is optimal.

To improve the flexibility of the observations real-time viewing of the images is required.
This can only be achieved in a data streaming approach where not only the final image is cal-
culated but intermediate images are created from the incoming flow of data. However, in a
streaming approach, computing the Fourier transform using the FFT become a computation-
ally intensive operation. Thus a specialized Fourier Transform is needed. For this purpose,
the Single Point Incremental Fourier Transform (SPIFT) was proposed (Saad et al. 2020). It
can compute the Single Point Fourier Transform of each datapoint in θ(N). This shifts the
bottleneck of the processing pipeline away from the Single Point Fourier Transforms of the
individual datapoints to the summation of those. But each summation still takes θ(N2) oper-
ations. Here it might be possible to harness the computational power of Graphical Processing
Units (GPUs) as this is a parallelizable task in which GPUs thrive.

The goal of this bachelor thesis is to measure to which degree the processing capabilities of
GPUs can be used to speed up the Single Point lncremental Fourier Transform.

The key performance measurement of SPIFT in a streaming environment is its throughput.
This throughput can be defined by a) the maximum speed of the data stream it can handle and
b) the rate at which it can provide output. To optimize SPIFT, not only can the results from the
Single Point Fourier Transform be summed efficiently by GPUs but also the number of updates
needed can be reduced. This is done by combining Single Point Fourier Transforms calculated
from different datapoints in an aggregation matrix instead of individually integrating them
into the result image. This reduces the computational load on the algorithm and therefor
significantly increases the maximum speed of the data stream it can handle.

To verify the advantages of a GPU based implementation and test the aggregation matrix,
four GPU based approaches were compared to a CPU based implementation. The calculations
were executed with picture resolutions between 1024 and 8192 in x and y on test datasets of
220 − 228 datapoints. The results are compared in terms of throughput as defined by a and b
and the different approaches are discussed.

1

2 Background

2.1 Fast Fourier Transform vs Single Point
Incremental Fourier Transform

For many applications that need Fourier transformations the Fast Fourier Transform (FFT) is
the best choice as its asymptotic complexity of O(nlog(n)) (Cooley and Tukey 1965) is the
lowest with n being the size of the 1D input vector. FFT can only be used to transform one-
dimensional data. A modification leads to the 2D-FFT which transforms two-dimensional
data, as it is needed for telescopic data. Another minor modification leads into the inverse
2D-FFT that is needed to transform the frequency spectrum to the result image. The resulting
algorithm still has a complexity of O(n · log(n)) with n being the number of datapoints in the
2D input matrix.

Performing a FFT for every datapoint, as needed in a streaming enviroment, is computa-
tionally very intensive. For the specific case, where it is not need to recalculate the whole
image, but only update it with the newest datapoint a specialized Fourier transform was de-
signed: SPIFT. Most other Fourier Implementations, including 2D-FFT, require static data of
fixed size to perform the transformation. This means that the time while the data is collected
the algorithm is either idling and the time is wasted or completely recalculating the image for
every datapoint using all previous datapoints. Not so with the SPIFT: It incrementally incor-
porates the datapoints as they come from the telescope. As the algorithm starts with the first
datapoint the picture is building up right from the beginning and intermediate results can be
extracted at any point during the execution. The algorithm finishes after the last datapoint is
measured and incorporated.

2.2 SPIFT
In the implemented SPIFT, an image is calculated from a stream of datapoints. Each datapoint
is a triple 〈u, v, vis〉: The u and v coordinates together describe the distance of the telescopes
and their angle to the observed source and a complex visibility vis encodes phase and ampli-
tude information of the measured radio wave. The stream of incoming triples is unordered.
By calculating the Fourier transform of all datapoints individually and then combining them
the image in form of a matrix of complex numbers is calculated.

The whole process can be simplified to the single equation: It = It−1 + vist · Lut,vt . It
is the state of the result matrix at time t, vist is the complex visibility of the datapoint at
position ut and vt. Lut,vt is the twiddle factor matrix, a matrix of the same dimension as It
consisting of the twiddle factors for the coordinates ut and vt. The twiddle factor at position

2

j, k in the twiddle factor matrix for the datapoint at u, v can be calculated in two ways:
W u·j+v·k = e(i∗2π(u·j+v·k)/N) orW u·j+v·k = cos(2π(u·j+v ·k)/N)+i∗sin(2π(u·j+v ·k)/N).
The twiddle factors are complex numbers on the unit circle in the complex plain and there are
only N distinct twiddle factors. These N twiddle factors are repeated in each twiddle factor
matrix. Thus a significant reduction in runtime complexity was made by initially calculating
allN twiddle factors and then only combining them into the individual twiddle factor matrices.
By exploiting the periodicity of the twiddle factors within a twiddle factor matrix, not even the
construction of the whole twiddle factor matrix is needed anymore. A twiddle factor matrix
can be defined by a twiddle factor vector, a shift type and a shift index. From these three
parameters the twiddle factor matrix can be recreated by copying the twiddle factor vector
into the first row in the twiddle factor matrix, then circularly shift the twiddle factor vector
by the shift index and copying this shifted vector into the second row in the twiddle factor
matrix. This continues until the whole matrix is populated. This procedure for the shift type
"row shift" can be easily adapted to "column shift" by filling the twiddle factor matrix column
wise and shifting column wise. An example of a twiddle factor matrix is given in Table 2.1.

Table 2.1: The 8 x 8 twiddle factor matrix L2,3. Shift type: "row shift", shift index: 3, shift
vector: row 0

0 1 2 3 4 5 6 7
0 W 0 W 3 W 6 W 1 W 4 W 7 W 2 W 5

1 W 2 W 5 W 0 W 3 W 6 W 1 W 4 W 7

2 W 4 W 7 W 2 W 5 W 0 W 3 W 6 W 1

3 W 6 W 1 W 4 W 7 W 2 W 5 W 0 W 3

4 W 0 W 3 W 6 W 1 W 4 W 7 W 2 W 5

5 W 2 W 5 W 0 W 3 W 6 W 1 W 4 W 7

6 W 4 W 7 W 2 W 5 W 0 W 3 W 6 W 1

7 W 6 W 1 W 4 W 7 W 2 W 5 W 0 W 3

The above described update of the image is broken into four steps that are performed se-
quentially for each datapoint. Each of these steps only depends on the previous steps for this
datapoint and is independent of all other datapoints.
The four steps are:

1. Calculating the shift type

2. Calculating the shift index

3. Calculating the shift vector

4. Updating the previous image

Step 1: Shift type

Calculating the shift type is simple: it is column shift if one of these three conditions hold:

3

• v is 0

• u is odd and v is even

• v is even and a power of two

Otherwise it is row shift. Algorithm 1 shows the pseudo code for calculating the shift type.

Algorithm 1: isRowShift(ut, vt) (Saad et al. 2020)

return !((vt== 0) or (ut% 2 == 1 and vt% 2 == 0) or
(vt% 2 == 0 and gcd(ut,N) < gcd(vt,N)))

Step 2: Shift index

The calculation of the shift index depends upon the shift type. For a row shift, the shift index
is the smallest positive integer j where j ∗vk mod the matrix dimension equals uk. Similarly,
for column shift the shift index is the smallest positive integer j where j ∗uk mod the matrix
dimension equals vk. In the worst case all numbers up to the matrix dimension -1 have to be
tested and thus this step has an asymptotic complexity of O(N). It can be proven, that for
every coordinate with uk & vk smaller than the matrix dimension a shift index can be found.
This computation is shown in the pseudo code in Algorithm 2.

Algorithm 2: ShiftIndex(ut, vt, isRowSh) (Saad et al. 2020)

if (utor vt== 0) then
return 0;

p = -1 ;
if (isRowSh) then

for k=0 to N do
if ut== kvt% N then

p = k ;
break;

else
for j=0 to N do

if vt== jut% N then
p = j ;
break;

return p;

4

Step 3: Shift vector

To calculate the shift vector the shift type and the shift index has to be known. The shift
vector is computed by multiplying the complex visibility of the datapoint with the twiddle
factor vector. For this the twiddle factor at each index position is fetched from the set of the
precomputed twiddle factors and is then multiplied with the visibility of the datapoint. The
correct twiddle factor for the k-th datapoint at the j-th position in the shift vector is j ∗ vk
mod N , if the shift type is row shift or j ∗ uk mod N for column shift. Like this the shift
vector can be computed in N complex multiplications and thus the asymptotic complexity is
θ(N). Algorithm 3 shows how this can be implemented in pseudo code.

Algorithm 3: ComputeVector(ut, vt, vist, isRowSh, N) (Saad et al. 2020)

for k=0 to N do
if (isRowSh) then

q[k] = vist ·W k·vt%N

else
q[k] = vist ·W k·ut%N

return q;

Step 4: Updating the previous image

The shift type, index vector from step the previous steps implicitly define the second part
of the update equation: vist · Lut,vt , the Single Point Fourier Transform. Now in this step
the previous image has to be incremented by the matrix defined by the Single Point Fourier
Transform. A pseudo code implementation of this is given in Algorithm 4.

Algorithm 4: IncUpdate(It−1, q, isRowSh, p, N) (Saad et al. 2020)
if isRowSh then

for j = 0 to N do
startIdx = (p · j) %N;
for k = 0 to N do

idx = (startIdx + k) %N;
It[j,k] = It−1[j,k] + q[idx];

else
for k = 0 to N do

idx = (p · k) %N;
for j = 0 to rows do

idx = (startIdx + j) %N;
It[j,k] = It−1[j,k] + q[idx];

return It;

5

Asymptotic complexities of the four steps

The first step can be accomplished in asymptotically constant time. The second and third step
have an asymptotic complexity of θ(N) with N being the matrix dimension. The fourth step
has an asymptotic complexity of θ(N2) and thus it is the main bottleneck.

As the first three steps are completely independent of the current state of the result or any
other datapoint, a very efficient parallelization could be possible. Even the fourth step, updat-
ing the matrix, can be parallelized as the update consists of summing the result matrix with
a matrix defined by the shift vector. As matrix summation is commutative and associative,
the order of the updates is irrelevant, and the updates can be grouped into different matrices
that are later combined. Therefor the algorithm to be implemented focuses on reducing the
bottleneck of the fourth step by optimizing and parallelizing it.

2.3 Comparing CPU and GPU
The CPU is the centre of every computer system. It is responsible of executing the operating
system and the programs the user requests. These are rather few processes. To allow for a
pleasant experience the system needs to be very responsive and thus these few tasks of the
CPU need to be executed fast. Modern computers have one CPU which consists of several
relatively independent cores. Typical desktop processors have about 4 – 12 cores. In servers
the CPU is also responsible for executing parts of the processing pipeline. The parts, that
are best handled by the CPU, are those that are not dividable into multiple subproblems and
thus need to be executed by a single fast core. To be able to execute several of these parts
in parallel, modern servers have between one and four CPUs with each up to about 64 cores.
Most modern CPUs support hyperthreading which means that each CPU core can execute 2
threads almost in parallel. While the most powerful systems can handle 512 threads in parallel,
we limited our research to more widely used server capacities of around 40 cores.

In comparison modern GPUs have up to 128 streaming multiprocessors (SM). Each SM
consists of 32 compute unites, called cuda cores, and thus is able to execute 32 threads in
parallel. These parallelly executed threads are called a warp. GPUs switch between warps to
minimize idling time resulting from slow memory access. Context switching is very fast as
there are registers for several warps on chip. This means that there always are multiple warps
ready for execution on a SM. Whenever one is waiting for a slow memory access, the SM can
switch warp and continue executing a different warp until the requested data arrives. As all
the information of this new warp is already loaded into the registers the switch has minimal
overhead. There is space in the registers for up to 64 warps per SM, but this is also dependent
on the number of registers needed per thread. This results in up to 4096 cuda cores in a single
GPU. To increase the GPU based parallelism even further there can be multiple GPUs in a
system.

A combination of both CPU and GPU is needed to efficiently execute the various different
tasks of a computer from system kernel execution to image rendering. While CPUs are strong
in executing a branching set of instructions, GPUs excel in parallelism. This difference is
reflected in the hardware used for these compute units. CPUs and GPUs use a different number

6

of different compute cores with each different instruction sets and different memory.
CPU cores are optimized to reduce latency to make the system responsive. This results

in very fast cores (2 – 5Ghz). To reduce the latency even more, a big part of each core is
dedicated to branch prediction. Branch prediction is the process of a core taking a guess what
it should do next while waiting for the decision on what it really should do. If the guess was
correct, the branch is accepted, and the execution continues at the final point of this branch.
Otherwise the branch is ignored, and the correct branch is calculated. As the branch prediction
is done during idle time of the processor, no performance is lost but potentially time is gained.
The prediction is important to execute a branching set of instructions very fast.

For GPUs branch prediction doesn’t make sense as there are very few branches in GPU
code. Additionally, when they execute code they are always under full load. Parts of the GPU
never idle while others are working, because the tasks for the GPU are those that can be split
into many subproblems and spread onto all parts of the GPU. For example, while waiting for
data, GPUs can very efficiently context switch and process another thread. With these many
multi thread focused cores a GPU can efficiently process big chunks of data, while CPUs excel
at predicting the path of a single thread and thus executing it very fast.

2.4 GPU Thread model
As the main point of GPUs is parallel execution of threads, understanding the thread model
is key. On the highest level the GPU is a single processing unit. It consists of streaming
multiprocessors (SM) that can each execute a warp of 32 threads in parallel. When launching
code on a GPU this code has to be within a special function called ‘kernel functions’. The key
difference in behaviour of kernels compared to normal functions is the automatic multithread-
ing. When launching a kernel not only the arguments are passed in but also the parallelisation
information defining on how many threads the kernel should be launched. This is done by
specifying a grid of blocks, where each block contains a fixed number of threads. The number
of threads in a block is defined in the launching parameter blockDim. The parameter block-
Dim consists of three integers (x,y,z) specifying a three dimensional matrix of threads. Each
block is executed on a single SM in warps of 32 threads. These 32 threads in a warp are then
executed truly parallel, meaning that each thread executes the same command at the same
time. The only exception is the case when the threads within a warp branch. Then one part of
the warp idles while the other threads execute the branch. This is very inefficient and has to
be considered when writing kernels. Which 32 threads of a block are grouped into a warp is
chosen by the SM and cannot be predicted or influenced.

A key design decision when writing GPU code is the number of threads per block. Obvi-
ously, the number should be dividable by 32 as otherwise a warp with less than 32 threads will
be executed which leads to idle time in the SM. The maximum number of threads per block is
1024. When using too few threads per block the SM overhead for scheduling and switching
blocks becomes significant. Less than 64 is not recommended (NVIDIA Corporation 2020).
The optimal number depends on the problem and can only be found by testing. Depending on
the number of threads per block, the number of blocks required to launch the total number of
threads needed can be calculated. These blocks are then ordered into a three-dimensional grid

7

Figure 2.1: Illustrating the GPU-Thread model

8

defined by the launch parameter gridDim. How the blocks are ordered in the grid does not
matter for the GPU, but it makes sense to order them resembling the problem or data structure
at hand. To differentiate the threads and instruct them to execute the same code but with dif-
ferent data each thread has a variable threadIdx that contains its coordinates within the block
and a variable blockIdx that contains the coordinates of its block within the grid. Additionally,
the gridDim and blockDim can be accessed. An example of such a grid of blocks is given in
Figure 2.1.

2.5 GPU Memory model
The major part of the GPU memory is the global memory. Compute focused datacentre GPUs
can have up to 40GB of global memory. It can be accessed from every thread and even from
the CPU. But it has the big trade-off of being slow as it is accessed by many threads in parallel.
Additionally, it is not located on the GPU processing chip but around it which leads to higher
access latencies. By following access patterns, the throughput can be significantly improved
compared to random accesses. For example, threads can be organized within a block in a way
that they access data from a consecutive block of memory. Then all individual memory access
requests can be coalesced into a single or very few requests. As the memory bandwidth of
modern GPUs is very wide, a request for a big block of memory takes the same amount of
time than a request for a small block of memory. Depending on the GPU there are also other
efficient patterns. A subset of the global memory can be declared as texture memory. This
significantly increases the access speed, as this memory is read only and thus can be efficiently
cached in the texture cache, which is fast. Additionally, there is special hardware in the GPU
that accelerates often used texture access patterns.

The rest of a GPU’s accessible memory consists of constant memory, shared memory, reg-
isters and local memory. Constant memory is independent of the global memory but can also
be accessed by all threads. Similar to texture memory it is read only and cached in its own
constant cache. But it is limited to 64KB and misses the texture specific access features of
the texture memory. Shared memory is memory that can only be accessed by threads of the
same block. Thus it can be physically closer to the individual cores and has a latency roughly
100x lower that uncached global memory access (Harris 2013). Also, its access bandwidth
is much faster than global memory. Each thread also has its own memory, called registers,
that only itself can access. Registers are the fastest memory, but they are very small with only
64k 32-bit registers for each SM. These registers are then split between all threads that are
currently being processed on the SM. If the registers are too small, parts of the data will be
moved to the local memory. Local memory is a segment of the global memory that can only
be accessed by the current thread. But as it is not within the SM, it’s significantly slower
(NVIDIA Corporation 2020).

9

2.6 Example: Matrix Product
The standard example to demonstrate the GPU thread and memory model is the matrix prod-
uct. Let’s name the two input matrices A and B and give them a dimension of 32x16 and
16x32. This will result in a matrix R with dimension 32x32. Using 2D arrays on the GPU
is not recommended as this means that for every lookup memory is accessed twice. Thus the
arrays are flattened to a 1D array by appending the rows. The smallest independent task in
this problem is calculating a single position of the result matrix and thus should be chosen as
the task for a single thread. This means that 1024 threads are needed to calculate the matrix
product.

In the simplest solution, the matrices A, B and R are saved into global memory. Now the
1024 threads have to be assigned into blocks. One could launch a single block with all the
threads. But then the whole execution would happen within a single SM and all other SM
would be idling. Alternatively, one could group a column of R, 32 threads, into a block. This
means the blockDim is 32x1x1 and the gridDim is 32x1x1. Now, during kernel execution
each thread has to get its first factor from A, multiply it with the first factor from B and add
it to the product of the second factors and so on. This results in 16 global memory accesses
from A, 16 from B and one write to R. As 1024 threads execute this sequence global memory
is accessed 263168 times. This is not efficient.

To reduce the global memory accesses shared memory can be utilized. Accessing data
from shared memory is still slow but orders of magnitude faster than from global memory.
In the above model all threads of the same block access the same values from matrix B. This
is good as these values could be initially loaded into shared memory which would severely
reduce the number of global memory accesses. But every thread accesses different values
of matrix A, so those can’t be loaded into shared memory efficiently. By grouping threads
differently into blocks the amount of different positions accessed in the matrices A and B by
each block can be reduced. By grouping the result matrix into 16 squares (4x4) of 8x8 blocks
(illustrated in Figure 2.2), each block has to load only 8 rows from matrix A and 8 columns
from matrix B. This means launching the kernel with a blockDim of 8x8x1 and a gridDim of
4x4x1. Each block firstly loads the parts needed from matrix A and B into local memory. Then
the all threads within this block have to be synchronized to ensure that all the data was read
into shared memory. Then each thread calculates the vector-product and then writes its result
back to the result matrix. This results in 5120 global memory reads which is significantly more
efficient than the above approach. An additional advantage of this grouping is that the requests
to load data from global memory might be coalescence. Coalescence is what happens when
multiple threads in the same warp access adjacent values from global memory at the same
time. As the bandwidth between shared memory and global memory is wide, the coalescence
request, loading a chunk of data, takes the same time as an individual request, loading a single
datapoint. This further reduces the number of global memory accesses.

10

Figure 2.2: Final thread model of the matrix product

11

3 Experimental Setup

3.1 Hardware
The algorithm was implemented and tested on a modern compute focused server containing
the following components:

Table 3.1: Description of the testing server
Component Version
CPU 2x Intel Xeon Gold 6230 20 Core / 40 Thread @ 3.90GHz
Motherboard Super X11DPG-OT-CPU
Memory 385610MiB ECC DDR4-2933
GPU 6x ASPEED NVIDIA GeForce RTX 2080 Ti
GPU driver NVIDIA 418.113
Operating System Debian GNU/Linux 10 (buster) x86_64
Kernel 4.19.0-9-amd64

The server consisted of a dual CPU system containing two Intel Xeon Gold 6230 20 Core /
40 Thread CPUs. 385GB of DDR4-2933 memory were present. As GPUs six NVIDIA RTX
2080ti-s were used. As the operating system the Linux distribution Debian was used.

3.2 Software
The implementations were done using C++ 17 with the CUDA API. Cuda is an API developed
by NVIDIA to efficiently execute code on their GPUs. Initially it was an extension for the pro-
gramming language C, but since the introduction of the NVIDIA Fermi-Architecture in 2010
it also supports C++ (NVIDIA Corporation 2020). Contrary to similar APIs like OpenCL,
Cuda only runs on NVIDIA GPUs and not on AMD or Intel GPUs. Many higher level lan-
guages like Python or MATLAB have wrapped Cuda and are thus also able to execute code on
GPUs. But to get the maximum performance and flexibility, C++ is the best option as it allows
for a better optimization and thus faster execution on supported cards (Karimi, Dickson and
Hamze, 2010).

3.3 Dataset
Test data was used to check the correctness of the algorithm and to compare run times of
different versions of the algorithm. To verify the correctness of the algorithms several random

12

input images with different dimensions were transformed into frequency space once using
MATLABs 2D-FFT. These pairs of original and transformed images were then used to verify
the correctness of each algorithm. This was done by transforming the transformed input image
back to the time space using the currently developed SPIFT and comparing each point of the
computed image with the original image. To accommodate for rounding errors a threshold of
10−4 was set for the absolute difference between every position in the original and computed
image.

To test the performance of the algorithms test data was randomized before every execution.
Since the visibility at a certain position does not change the flow of execution it was held
constant. Only the positions of the datapoint were randomized. To generate random datapoints
the function std::rand() was used. The datapoint was scaled into the correct range using the
modulo operation. The data sets are not perfectly random as std::rand() does not provide truly
random figures and the scaling using the modulo operation can show a bias towards certain
values. But since better random generators are more computationally intensive and thus not
practical for large datasets, the std::rand() function was decided to be good enough for this use
case. Matrices with the dimensions 210 x 210, 211 x 211, 212 x 212 and 213 x 213 were tested.
Each entry in the matrix consists of two 32bit floats representing a single complex number.
This results in matrices with sizes between 8.4MB and 537MB. The random order of generated
coordinates of the datapoints in the test data accurately resembles the order of the coordinates
in a real data stream as neither shows any significant bias towards any datapoints.

3.4 Experimental Setup
All tests were executed on the same server with exactly the described components. The cuda-
code was compiled with the cuda compiler “nvcc”, whereas the CPU-only implementation
was compiled with “gcc”. The optimization flag was always set to “-O3” to maximise the
compiler’s optimization of the code.

To find the best implementation of the algorithm four different versions using GPUs were
implemented and tested. To provide for a baseline for evaluating the performance gain through
the use of GPUs, a CPU based fifth version was implemented and compared.

3.5 Evaluation of data
To evaluate the performance of the five algorithms the execution times were measured in
different configurations. The total execution time of an algorithm only captures an overview
over the efficiency of the algorithm. To get a more detailed view on the performance and
identify bottlenecks 20 different parameters describing the algorithm were measured. The
most important are total execution time, time while stream was active, time to finish up the
calculations, combining matrices and dividing by number of updates, average time per row &
column shift update, time to calculate the shift type, shift index and shift vector and number
of updates done.

Each algorithm was tested in different configurations. For these configurations, different

13

matrix-dimensions, numbers of GPUs available and numbers of CPU-threads processing data
were combined. Each permutation was tested once and consistency with similar combinations
was checked.

14

4 Results

4.1 General implementation structure
All algorithms follow the same basic structure. A group of threads, termed "Fourier threads",
read the datapoint coming from the data stream and perform a Single Point Fourier Transform
on them. Then they pass their result to socalled "update threads". These threads then inte-
grate this Single Point Fourier Transform into the result matrix. Two main optimizations of
the SPIFT algorithm were made in all implementations: (1) reduce the time it takes to update
the result matrix, (2) reduce the number of updates needed. (1) was done by parallelizing this
step on two levels. Multiple updates for different datapoints were processed in parallel. This
is possible as the result matrix is the sum of all the Single Point Fourier Transforms. Thus the
Single Point Fourier Transforms can be grouped and these groups summed individually. These
groups can be combined at the end into the complete result in θ(N2) steps. This allows for
multiple update threads to completely independently update their own result matrices. A sec-
ond level of parallelism was achieved when using GPUs to update the result matrices. GPUs
can handle many threads and thus can update many parts of their result matrix in parallel. (2)
was done by exploiting the fact that if two datapoints have the same shift type and index they
can be unified in θ(N) operations into one shift vector and undergo the fourth step as one
update. By efficiently combining many shift vectors the number of updates needed can be
significantly reduced.

Five different approaches were implemented that differ in various parts of the algorithm.
They all try to implement these optimization as efficiently as possible. But as they basically
implement the same algorithm, they share many parts of the code, especially the kernels, as
shown in Table 4.1 below. Of course the CPU-based approach doesn’t use kernels.

Table 4.1: Comparison of the five algorithms regarding their use of common kernels
Implementation Uses Update Kernels Uses SumResults Uses DivideResult

Unsynchronized approach Yes Yes Yes
Block update approach Yes Yes Yes
GPU parallel approach different gridDim No Yes

Queued approach modified version Yes Yes
CPU based approach No No No

15

4.2 Kernels

4.2.1 General kernel information
The main task of the GPU is clearly step four of SPIFT: given a vector, a shift and a shift type
update the GPUs result matrix. As the procedure for the row shift is significantly different
to the procedure for the column update the algorithm was split into two separate kernels, one
for each shift type. Another part of the algorithm that can be efficiently calculated is the
combination of the result matrices after all datapoints were incorporated into them. Finally,
the result matrix has to be divided by the number of datapoints processed. This means that 4
kernels are needed in these approaches:

• updateWithRowShift

• updateWithColumnShift

• divideResult

• sumResults

4.2.2 Update Kernels
The smallest independent subproblem is updating a single datapoint of the result matrix. This
means retrieving the current state of the result matrix, adding the correct value from the shift
vector and writing back this sum. Letting each thread execute this has several disadvantages.

• Firstly, a lot of threads are needed, which means a lot of scheduling overhead.

• Secondly each thread has to individually calculate which position it has to update in
the result matrix and which position in the shift vector it needs. An efficient approach
would group the positions sensibly, then it would be enough to calculate the position
only once and then derive the positions for the other datapoints from the first.

• Thirdly there is no control in which order a SM executes the threads within a block.
Thus, the chance of multiple threads in a warp accessing adjacent data at the same time
is low. This means that there might be little memory access coalescence.

To solve these problems the result matrix was divided into squares of 128x128 which are
updated by a block of 128 threads. Other block dimensions were tested as well (Figure 4.2).
Kernels with a blockDim between 32 and 512 performed slightly worse. Each thread updates
a column from the result matrix. By letting the threads update columns the threads access
adjacent datapoints in the result matrix at the same time and thus allowing for efficient coa-
lescing.

As each datapoint of the result matrix is read exactly once and written once, no optimization
using shared memory is possible here. Also, for the shift vector, optimization using shared
memory is not possible. Even though multiple threads in the same block might access the
same shift positions, this is very difficult to predict. And probably not all positions in the

16

Figure 4.1: Miniature thread and memory model with a blockDim of 5x1x1 and a gridDim of
3x3x1

17

Figure 4.2: Influence of the blockDim on the execution time for both update kernels. Exam-
ple using 50 Fourier threads, a result matrix of 4096x4096, 6 GPUs and 20482

datapoints

shift vector are read in a block either, thus loading the whole vector is not efficient. As the
shift vector is constant over a single update it could be moved to constant memory. As constant
memory is of limited size, this is not a solution that scales to larger matrices. Therefore texture
memory was chosen as it fulfills two important properties: it is (1) independently cached, thus
very fast and (2) optimized for fast non-coalescented access as it is processed using specialized
shader hardware. This significantly improved performance compared to a shift vector in global
memory. Figure 4.1 shows a miniature version of how the threads are grouped out and how
the different memory types are used.

4.2.3 Row Shift Kernel
To compute a row-shift update, the kernel gets the pointer to its result matrix, called dev_matrix
in the code below, the pointer to the shift vector, dev_vector, the matrix dimension,
matrix_dim and the shift index, shift, passed in. Information about the threads’ coordi-
nates within the block and the blocks’ coordinates within the grid are available in the variables
threadIdx and blockIdx by default. Additionally, the block dimension and grid dimen-
sion are available in blockDim and gridDim by default.

Firstly, each thread calculates the index of the first datapoint in the result matrix that it
updates. This index is then saved in the integer variable start_index. Secondly each
thread calculates the starting index in the shift vector, which is then saved into the integer
vectorPos. Having these two values, the indices of all datapoints needed for different
positions can be derived efficiently.

18

After calculating these initial indices, each thread loops over the positions it has to update.
Their number does not have to depend on the blockDim as in this implementation. As long
as enough threads are launched in total to saturate the GPU it does not affect performance. For
simplicity the number of datapoints updated per thread is equal to the number of threads in a
block in this implementation.

Within the loop, two operations are needed: updating the datapoint and updating the indices.
As the result matrix is a standard 1D matrix of complex numbers, accessing them follows the
normal C++ array access pattern. As the shift vectors are saved into texture memory, they
are accessed using the texture function tex2D. Because no tex1D function exists, the y-
coordinate passed in, is always set to 0. Additionally, the datatype accessed has to be passed in
as a template parameter. Textures do not support complex numbers, therefore two consecutive
floats are implicitly grouped together. Thus, the vectorPos has to be multiplied by two to
get the real part and multiplied by two and +1 for the imaginary part. To improve coalescence,
it might be more efficient to group all real parts of the shift vector and all imaginary parts into
separate blocks. This improvement would only work for row-shift and not for column-shift
updates as only there the shift vector is accessed sequentially. But due to the caching of the
texture data, this improvement would probably be minimal. Updating the result matrix index
is simply done by incrementing it by the result matrix dimension. Similarly, the vectorPos
is incremented by the shift. But afterward the modulo with the result matrix dimension has
to be taken to ensure the circularity of the shift vector. The Cuda/C++ implementation of this
kernel is given in Algorithm 5.

_ _ g l o b a l _ _ void upda teWi thRowShi f t (cuFloa tComplex∗ dev_mat r ix , \
c u d a T e x t u r e O b j e c t _ t d e v _ v e c t o r , i n t matr ix_dim , i n t s h i f t)

{
i n t s t a r t _ i n d e x = b l o c k I d x . x ∗ blockDim . x ∗ mat r ix_d im + \

b l o c k I d x . y ∗ blockDim . x + t h r e a d I d x . x ;
i n t v e c t o r P o s = (s h i f t ∗ b l o c k I d x . x ∗ blockDim . x + t h r e a d I d x . x + b l o c k I d x . y ∗ blockDim . x) \

% mat r ix_d im ;
f o r (i n t i = 0 ; i < blockDim . x ; i ++) {

d e v _ m a t r i x [s t a r t _ i n d e x + i ∗ mat r ix_d im] . x += tex2D < f l o a t >(d e v _ v e c t o r , 2∗ v e c t o r P o s , 0) ;
d e v _ m a t r i x [s t a r t _ i n d e x + i ∗ mat r ix_d im] . y += tex2D < f l o a t >(d e v _ v e c t o r , 2∗ v e c t o r P o s + 1 , 0) ;
v e c t o r P o s += s h i f t ;
v e c t o r P o s %= mat r ix_d im ;

}
}

Algorithm 5: Row shift update kernel

4.2.4 Column Shift Kernel
In its structure the column shift kernel is very similar to the row shift kernel. Firstly, the
starting index of the matrix, start_index, and the starting index of the vector, vectorPos, are
calculated. The calculation of vectorPos is different than in the row-shift kernel whereas
the calculation of the start_index is identical to the row-shift kernels. Then the threads
loop over the dev_matrix and update the datapoints. In the column-shift kernel an im-
provement was made by first loading the datapoint to be updated into a local variable, then
update the real and imaginary part on the local variable before writing it back to the global

19

matrix. This change only improved the performance in the column-shift kernel. After updat-
ing a datapoint the indices are updated similar to the row-shift kernel. Again the Cuda/C++
implementation of this kernel is given in Algorithm 6.

_ _ g l o b a l _ _ void u p da t eW i t hC o l um n S h i f t (cuFloa tComplex∗ dev_mat r ix , \
c u d a T e x t u r e O b j e c t _ t d e v _ v e c t o r , i n t matr ix_dim , i n t s h i f t)

{
i n t s t a r t _ i n d e x = b l o c k I d x . y ∗ blockDim . x ∗ mat r ix_d im + \

b l o c k I d x . x ∗ blockDim . x + t h r e a d I d x . x ;
i n t v e c t o r P o s = (s h i f t ∗ (t h r e a d I d x . x + blockDim . x ∗ b l o c k I d x . x) + b l o c k I d x . y ∗ blockDim . x) \

% mat r ix_d im ;
cuFloa tComplex d e v _ m a t r i x _ p o i n t ;
f o r (i n t i = 0 ; i < blockDim . x ; i ++) {

d e v _ m a t r i x _ p o i n t = d e v _ m a t r i x [s t a r t _ i n d e x + i ∗ mat r ix_d im] ;
d e v _ m a t r i x _ p o i n t . x += tex2D < f l o a t >(d e v _ v e c t o r , 2 ∗ v e c t o r P o s , 0) ;
d e v _ m a t r i x _ p o i n t . y += tex2D < f l o a t >(d e v _ v e c t o r , 2 ∗ v e c t o r P o s + 1 , 0) ;
d e v _ m a t r i x [s t a r t _ i n d e x + i ∗ mat r ix_d im] = d e v _ m a t r i x _ p o i n t ;
v e c t o r P o s ++;
v e c t o r P o s %= mat r ix_d im ;

}
}

Algorithm 6: Row shift update kernel

4.2.5 SumResults & DivideResult
After all datapoints are combined the different result matrices from the GPUs have to be
combined. After the combination each position in the result matrix has to be divided by the
total number of datapoints processed. As both of these actions can be efficiently separated
into independent subproblems, they can be executed on GPUs. But as they are only executed
once, their performance is not as crucial as the row & column shift kernels.

The SumResults kernel takes pointers to two result matrices and the matrix dimension. To
access the two result matrices, they both have to be in the GPU’s global memory. This means
one of them has to be moved from a different GPU to the current one. The block and grid
dimensions are exactly the same as in the row & column shift kernels. Also, the iteration of
each thread over the matrix is the same. But instead of updating each datapoint of one matrix
with a value from the shift vector, the value is incremented by the value of the corresponding
datapoint from the other matrix. This kernel only combines two matrices. To combine more
matrices, the kernel has to be executed multiple times with the different matrices.

The divideResult kernel is even simpler. It also only needs the pointer to the result matrix
and the number of datapoints processed. The thread and block dimensions and the iteration of
each thread are again the same. The only difference lies within the loop. Here each datapoint
is divided by the number of datapoints processed and then written back.

4.3 Implementations

4.3.1 Unsynchronized approach
In this implementation the Fourier threads are executed by the CPU and the update threads
on the GPU. This means that any number of CPU threads each independently read the next

20

datapoint in the stream, calculate its shift type, shift index and shift vector. Then the thread
checks if there already exists a vector with the same type and index in a shared aggregation
matrix, waiting to be integrated into the result. If there is, the two vectors are be combined.
Else the new one is added to the waiting list. On the other side the update threads on the
GPU threads go through all possible shift types and indices and check if there is a vector with
them waiting to be processed. If there is, it is integrated into their individual result matrix and
removed from the shared aggregation matrix. After the last datapoint is read, processed and
integrated into a result matrix, the result matrices are combined. A schemata of this approach
is given in Figure 4.3

The big advantage of this approach is the very strong independence between the different
steps as there are only 3 points of synchronization: the Fourier threads read from the same
stream, the Fourier and the update threads read & write to the same aggregation matrix and
the update threads need to aggregate the results at the end. To prevent race-conditions when
multiple threads access the aggregation matrix every entry is mutex protected. As there are N
possible shift indices and 2 different shift types, the chance of a collision is low and thus little
efficiency should be lost to synchronization.

A disadvantage of this approach is that the data is not being processed in any order. So, if
an intermediate result has to be calculated, the whole process needs to be stopped in order to
ensure that all datapoints that are already read are integrated. This means that the approach is
not truly stream processing.

4.3.2 Block update
This approach is very similar to the unsynchronized one, except that the GPUs are not con-
stantly updating the matrix. In fixed intervals of numbers of processed datapoints the reading
of data is stopped and all aggregated points are integrated into the result. Then the Fourier
threads start reading and processing again. Reducing the number of updates should reduce the
load on the GPU. The execution times for the Block update approach are highly similar to the
unsynchronized approach in regard to all time components. The only difference lies within
the number of updates, as these can be set in the block update approach as a launch parameter.
Thus no further data was collected.

4.3.3 GPU Parallel updates
In this approach a different aspect of the algorithm is optimized. In all other cases, each update
thread is updating its own result matrix. But here the result matrix is split among the different
update threads and each update is split and each part processed on a GPU. This reduces the
memory needed on each GPU and could increase performance as the smaller matrix parts
might be cached more efficiently. Also, the combination of the results in the end only takes
constant time. A schemata of this approach is given in Figure 4.4.

The GPU parallel update approach is not a feasible approach as testing showed a negative
correlation between the number of GPUs and the number of updates. Thus, it is less or equally
efficient as the unsynchronized approach in almost all parameters. The only benefit of parallel

21

Figure 4.3: Processing steps in the unsynchronized approach

22

Figure 4.4: Processing steps in the GPU Parallel Updates approach

GPU updates is a reduction in final processing time. This reduction did not influence the total
execution time enough to be significant. Thus this approach was abandoned.

4.3.4 Queued Approach
This approach tries to address the problem that the algorithm does not truly represent stream
processing as the order the datapoints are processed does not equal the order they are read
from the stream. In this approach the Fourier threads only process the datapoints but do not
deal with the aggregation part. After they process the datapoint, its three results, the shift type,
the shift index and the shift vector are just enqueued into a shared queue. The GPU-threads
then dequeue the next triple and linearly search a fixed number of triple in the queue if any can
be aggregated with the first one. This ensures that the datapoints are roughly processed in the
same order as they are read. Also, the combination of multiple shift vectors can be efficiently
performed on a GPU, which reduces the load on the CPU. A drawback might be the inefficient
search in the queue for similar datapoints. A schemata of this approach is given in Figure 4.3.
The Queued approach was found infeasible as even prototype implementations were not able
to produce results comparable to the unsynchronized approach.

23

Figure 4.5: Processing steps in the Queued approach

24

4.3.5 CPU based Implementation
This implementation follows the unsynchronized approach with the only difference being that
the update threads are executed on the CPU.

4.4 Execution times

4.4.1 Overview
To quantify the performance gain by using GPUs, the different algorithms have to be com-
pared. As the performance of each algorithm depends on its launch configuration, the best
configuration for each algorithm has to be found first. For this the algorithms were tested
in various configurations and the results presented below. After presenting the effects of the
different configurations, the algorithms are compared against each other in the next section.

For these tests the data was randomly generated before the start of execution. In all tests
20482 datapoints were processed. On the y-axis the execution parameters of the individual
tests are displayed. The first defines the number of Fourier threads, the second the matrix
dimension and the third the number of update threads. On the x-axis the execution time
in microseconds is displayed. The total execution time of the computation, the red bar, is
subdivided into three consecutive sections:

• Time while reading: The green bar displays time while the stream is active and new
datapoints are coming.

• Time after reading: The blue bar displays the time after the stream has ended when
only the update threads are active.

• Time for final processing: The cyan bar displays the time after all datapoints are in-
tegrated into the result matrices and these matrices have to be combined into a single
matrix and this combined matrix has to then be element wise divided by the number of
datapoints.

Even though the total execution time consists of only these three components, they often
do not add up to the total time. This occurs as the measurement for the time after reading
measures the duration each update thread takes to finish their part of the remaining updates.
These durations are then averaged to the time after reading. But the relevant duration for the
total execution time is not the average duration the update threads take but the longest duration.
In this sense the total execution time measures the actual time for the whole algorithm whereas
the time after reading measures the minimal duration for the time after reading that could be
achieved by further optimizing the final updates.

4.4.2 CPU-based approach
The execution time of the CPU-based approach depends on three parameters: the number of
threads reading the datapoints and doing the processing steps 1-3, called “Fourier threads”, the

25

dimension of the matrix and the number of threads updating the result matrix, called “update
threads”.

When keeping the number of update threads and the matrix dimension constant increasing
the number of Fourier threads consistently decreased the total execution time. Even though the
decrease is significant the reduction is not linear to the number of Fourier threads. The number
of Fourier threads only influences the time to read all datapoints and does not influence the
time after reading or the time for the final update. This is illustrated in Figure 4.6.

When keeping the number of Fourier threads and the matrix dimension constant increasing
the number of update threads significantly reduced the total execution time. This reduction
resulted from a reduced time while reading and a reduced time after reading. The increase in
the number of update threads not only has diminishing returns on the reduction of the time
while reading but even shows an increase in read time for more than 20 update threads.

4.4.3 Unsynchronized approach
The execution time of the unsynchronized approach depends on the same three parameters:
number of Fourier threads, matrix dimension and number of update threads (= number of
GPUs). Again, the number of Fourier threads is negatively correlated to the execution time.
This increase in the number of Fourier threads has diminishing returns. For most matrix
dimension the time after reading and the time for final processing is insignificantly small.
Only for matrix dimensions of 8192 and greater they become significant. These findings are
illustrated in Figure 4.8.

When keeping the number of Fourier threads and the matrix dimension constant an increase
in the number of update threads (GPUs) leads to a reduction in total execution. This reduction
can be best observed at higher matrix dimensions. There the data shows that mainly the time
after processing is reduced but also the time while reading decreases. An increase in the time
for final processing can be measured, but the time for final processing remains marginal in
comparison to the total execution time.

4.4.4 Unsynchronized approach vs CPU based approach
These two approaches are very similar regarding their implementation, thus their results can be
compared directly. Even though execution times are an important measurement, similarly im-
portant is the time per updates of the result matrices on a single GPU. With this measurement
the true power of GPUs can be directly shown, whereas the execution times in both approaches
are also heavily dependent on the CPU. As data clearly shows, the GPUs are orders of mag-
nitude faster than the CPUs when it comes to time per update. Form these two approaches
the average execution per datapoint can be calculated and also the average execution time per
datapoint in primitive approaches where no aggregation matrix was used and the result matrix
updated for every datapoint. In Table 4.2 it can be clearly seen that the aggregation matrix
reduces the average time per datapoint by orders of magnitude.

26

Figure 4.6: Influence of the number of threads processing steps 1-3 on execution time of the
CPU based approach

27

Figure 4.7: Influence of the number of threads updating the matrices on the execution time in
the CPU-only approach

28

Figure 4.8: Influence of the number of threads processing steps 1-3 on execution time of the
Unsynchronized approach

29

Figure 4.9: Influence of the number of GPUs updating the matrices on the execution time in
the Unsynchronized approach

30

Table 4.2: Compute time per datapoint on different matrix dimensions using different imple-
mentations
Implementation \ matrix dimension 1024 2048 4096

Primitive CPU based implementation 3701 µs 14430 µs 57123 µs
Primitive GPU based implementation 76 µs 182 µs 665 µs

CPU based implementation 18 µs 43 µs 143 µs
GPU based implementation 5 µs 10 µs 20 µs

Figure 4.10: Time per matrix update in CPU based approach and unsynchronized approach

31

5 Discussion

5.1 Fourier transforms in a streaming environment
Fourier transforms fall into two different categories. The standard approaches optimize their
execution times, but they rely on having static set of data before starting the calculations. The
fastest of these standard approaches is the Fast Fourier transform FFT with an asymptotic
complexity of θ(N ∗ log(N)). The second cluster enables to integrate the Fourier transform
into a streaming environment. In a streaming environment the Fourier transform processes
each datapoint individually and combines the results. aim is only to recompute thus They just
have to be fast enough to keep up with the incoming data and continuously produce results in
the form of intermediate images. Thus, their execution time is not their main objective, but
they are optimized for throughput. SPIFT was designed to be used in a streaming environment
and therefore belongs to the latter group.

To measure the throughput of our SPIFT implementations they were given the complete
dataset which they read linearly. This simulates the maximal speed of an incoming data stream
the implementation could handle. The time until all datapoints of the given dataset are pro-
cessed results in an execution time. From this execution time the throughput can be calculated.
The execution time consists of two main parts: (1) The calculations done while the simulated
stream is active and (2) concluding calculation after the stream has ended. By dividing (1) by
the number of datapoints in the dataset the throughput can be calculated. Thus, the crucial part
of the algorithm is part (1). In all experiments the number of datapoints was held constant and
thus part (1) correlates inversely to the throughput. Part (2) can be assumed to be independent
of the number of datapoints read. Therefore, it becomes insignificant with long data streams.
As part (2) becomes insignificant, the main optimizations of the algorithm focus on part (1).

In the original SPIFT algorithm θ(N) are needed to compute a Single Point Fourier Trans-
form and θ(N2) to update the result matrix with every new datapoint. Therefor the bottleneck
was identified as the updating of the result matrix. To accelerate the updating process, GPUs
were taken into consideration because matrix addition can be efficiently parallelized.

With the introduction of the aggregation matrix into the algorithm, the result matrix didn’t
need to be updated after every datapoint. This shifts the main computational load to the pro-
cessing of the individual Fourier transforms and thus to the CPU. Therefore, the CPU has to
be fast enough to keep up with the stream of data whereas the processes run on the GPUs
don’t influence the throughput. Thus, GPUs cannot be used to accelerate the processing of the
incoming data.

An intermediate image is calculated based on the current state of the result matrices. As
there is a delay between the processing of a datapoint on the CPU and its integration into a
result matrix, the intermediate images don’t represent the complete state of the data stream at

32

the time of their generation. To minimize this delay, the result matrices have to be updated as
often as possible. A minimum of 2N updates are needed, but up to the number of datapoints
is theoretically possible. 2N updates would mean that all updates take place after the stream
has finished. Thus, no intermediate images can be calculated, and in this case the FFT can
do the same faster. To generate a close to real time representation of the data, which is im-
portant in many applications, the rate of updates has to be maximized. This is limited by the
computational power of the GPUs.

5.2 Approaches
In the SPIFT algorithm as proposed in (Saad et al. 2020) every datapoint has to be transformed
individually. The first part of the calculation, the Single Point Fourier Transform, has an
asymptotic complexity of θ(N). The second part, updating the result matrix, has an asymptotic
complexity of θ(N2). On the tested CPU each update thread can perform an update in around
57000 µs on a matrix with a dimension of 4096. This is orders of magnitudes slower than the
ca 60 µs a Fourier thread takes to perform step 1. Thus around 950 CPU threads would be
needed to keep up with every Fourier thread. When performing the updates with GPUs, the
time per update is 550 µs on a GPU. Thus, 10 GPUs would be needed to for every Fourier
thread. Exaggerations on this scale are very inaccurate, but the estimates still show the order
of magnitude the real values lie in. As the time per update increases quadratically with the
matrix dimension, this approach does not scale.

Thus, the introduction of the aggregation matrix is crucial for the performance of the algo-
rithm. It shifts the load of N2 complex summations on the update threads to an additional N
complex summations on the Fourier threads. This is done by letting the Fourier thread com-
bine their shift vectors (size N) of two datapoints with the same shift type and index instead
of having the update threads twice update the result matrices (size N2). This combined shift
vector behaves as if it came from a single datapoint and thus requires only one update on the
result matrix. This can be generalized so that many datapoints with identical shift type and
index can be combined into a single combined shift vector. As the Fourier threads already
process an algorithm with an asymptotic complexity of θ(N), these additional N complex ad-
ditions do not change its asymptotical complexity. Therefore, this approach scales well and
thus is incorporated in all implemented approaches.

5.2.1 CPU based approach
In this approach the resources of the CPU are split between the two tasks: calculating the
shift vectors and combining them, and updating the matrix. No GPUs were used. This was
done to get a baseline to compare the GPU based approaches to. This approach performed well
concerning the throughput as this is mainly dependent on the CPU in all implementations. But
updates took significantly longer and therefore the number of updates it was able to achieve
were very limited as seen in Figure 4.10.

A certain improvement was achieved by efficiently utilising hyperthreading. Hyperthread-
ing allows a CPU to very quickly switch between two threads when one is waiting for a slow

33

memory access or something similar. This means a CPU can execute two threads seemingly
in parallel. But as these threads are not executed truly in parallel on separate cores, some un-
expected effects can occur when increasing the number of threads over the number of physical
cores. This is why in Figure 4.7 an increase from 20 to 40 update threads increased the total
execution time. When the distribution was 20 Fourier threads and 20 update threads, 50%
of the CPU’s performance was allocated to the Fourier threads. With 40 update threads the
Fourier threads used only 33.3% of the CPU’s performance. Even though the CPU was able
to process more due to hyperthreading between multiple threads in total less performance was
put into reading data and more into updating the result matrices. This has to be taken into
consideration when distributing the computing capacity of the CPU.

The separation between Fourier threads and update threads is an inefficient simplification
in the allocation of CPU threads. After all the datapoints are read, all Fourier threads are
idling, while the update threads are still processing. To speed up the process after reading
is completed, the Fourier threads could be repurposed to update threads. This would reduce
the time after read significantly. Thus, the time after read should not be seen as an important
factor when deciding upon the number of update threads.

Still CPUs are suboptimal for this algorithm in a streaming environment. Partially this
could be compensated by significantly increasing the processing power by using better or more
CPUs. Datacenters could provide this infrastructure but as CPUs are not the best component
for these computations anyway this is not the preferable approach.

5.2.2 Unsynchronized Approach
In this approach GPUs are utilized to replace the CPUs in the parts where they performed
the least: updating the result matrices. This can be efficiently handled by GPUs because the
updating can be easily executed in parallel. Using GPUs cuts down the time per update by a
factor of 18 for a matrix dimension of 1024 up to a factor of 28 for a matrix dimension of 4096
(compare Figure 4.10). As this effect increases with the size of the matrix dimension, GPUs
are essential for larger matrices.

This approach is the minimal approach as it purely implements the SPIFT with the aggrega-
tion matrix. It focuses on separating the individual processes and thus minimizing the synchro-
nization overhead. But some synchronization might bring a performance increase greater than
its synchronization overhead. Thus, several variations of this approach were implemented,
each trying to improve in a different area.

5.2.3 Block Update approach
In this approach the number of updates could be set. This allows to reduce the load on the
GPUs but still maintain the number of updates required to achieve the desired output. As this
approach makes fewer or an equal number of updates than the unsynchronized approach and
performs equally in the other parameters it is not optimizing the throughput. Its main advan-
tage is the reduction in computing power used and thus a reduction in energy consumption.
This makes sense, when the desired output can be quantified and lies below the maximum

34

possible output. As the aim in these experiments was to maximize output, this approach was
abandoned.

5.2.4 Queued Approach
Two main features were introduced in the Queued Approach. One was to increase the through-
put by reducing the tasks of the Fourier threads. This was implemented by letting the GPUs
instead of the Fourier threads combine the shift vectors of the same shift type and shift in-
dex. The other was to further reduce the lag between the measurement of a datapoint and its
integration into an intermediate result. This was implemented by changing the layout of the
aggregation matrix. The aggregation matrix was implemented as a queue where each new shift
vector was enqueued together with its shift type and index. The update threads then dequeue
the shift vectors and their types and indices and integrate them into the result matrices. This
ensures that the datapoints are processed in the order they appear in the data stream. To still
profit from the idea of combining similar shift vectors the update threads linearly searched the
queue for matching vectors. The vectors found would then individually be copied to the GPU
and combined there.

Combining the shift vectors on the GPU was efficient and the throughput of the Fourier
threads was increased. But searching linearly through the queue for matching vectors was
highly inefficient. For larger matrix sizes the chance of finding matching vectors decreased.
Less datapoints were aggregated and the update threads were not able to keep up with taking
out datapoints from the queue. Thus, the queue grew indefinitively. In a streaming environ-
ment this is not acceptable. Additionally, it completely failed to reduce the lag between the
measurement of a datapoint and its integration into an intermediate result as the datapoints had
to wait even longer in the result matrix than in the Unsynchronized Approach. In the imple-
mented prototype not even the Fourier threads were faster as the access to the one aggregation
queue had to be serialized to avoid race conditions. In contrast, in the normal aggregation
matrix only the access to a vector with the same shift index and type had to be serialized. The
bigger the matrix the more different combinations there are, and the serialization happened
less often.

5.2.5 GPU parallel approach
In the GPU parallel approach only one result matrix exists. But this result matrix is split up
among all GPUs and each GPU updates its part of the result matrix (Figure 4.4). The main
benefit of this is to be able to generate the final image and thus also intermediate images
faster. This approach failed as it is inefficient to synchronize GPUs. One reason could be that
the speed of the individual GPUs fluctuates and by synchronizing them, the fast ones have
to wait for the slower ones. The speed of the GPUs depends on many parameters ranging
from its current core temperature to its silicon quality. Another reason might be that the
shift vector has to be copied to all the GPUs at the same time which might overload the
bus. Several of these small asynchronicities can have a large impact as the update itself takes
only a very short amount of time but many updates must be synchronized. In the prototype
implementation the synchronization overhead was so big that increasing the number of GPUs

35

from 4 to 5 decreased the number of updates performed. Even with few GPUs the number of
updates were not comparable to those of the unsynchronized approach. Thus this approach
was abandoned too.

Further investigation could be beneficial as with this approach the generation of an inter-
mediate image can be accomplished very fast. Each GPU could divide its result matrix by the
number of updates in parallel and then the matrix parts could be assembled into an interme-
diate image in constant time as they only have to be appended. If the GPU synchronization
were to be improved, this approach could perform very well in applications where a lot of
intermediate images are needed.

36

6 Conclusion

Even though the maximum throughput of the algorithm cannot be significantly increased by
harnessing the computational power of GPUs the output of the algorithm is heavily dependent
on them. Already when using an exemplary 6 GPUs, up to 28x more updates of the result
matrices are possible which increases the rate at which output can be generated. The larger
the matrices are the more important the use of GPUs becomes.

Further investigation is needed into the best data structure to aggregate the shift vectors, as
a better data structure has potential to not only increase the algorithms throughput but also
increase the algorithms output and reduce the lag between the measurement of a datapoint and
its integration into the result matrix.

To find out how much performance is truly needed and how well these approaches scale,
they need to be tested in a larger testing environment. There a real data stream would have to
be used and real stream of output data generated based on the needs of astronomers.

Regardless of optimizations in the aggregation of shifts or even in the computation of the
Single Point Fourier Transform of the individual datapoints, GPUs will always excel in their
key part in all SPIFT implementation: updating the result matrix. TheseN2 independent com-
plex summations per updated are always needed and for that a modern GPU will outperform
any comparable CPU.

37

Bibliography

Cooley, James W and John W Tukey (1965). An Algorithm for the Machine Calculation of
Complex Fourier Series. Tech. rep. URL: https : / / www . ams . org / journal -
terms-of-use.

Harris, Mark (2013). Using Shared Memory in CUDA C/C++ | NVIDIA Developer Blog. URL:
https://developer.nvidia.com/blog/using-shared-memory-cuda-
cc/ (visited on 07/02/2020).

NVIDIA Corporation (July 2020). CUDA Toolkit Documentation. URL: https://docs.
nvidia.com/cuda/index.html (visited on 07/09/2020).

Saad, Muhammad et al. (2020). “Single Point Incremental Fourier Transform in Apache Flink”.
under review.

38

7 Appendix

The complete source code used for testing is accessible on Github at https://github.com/johannschwabe/SPIFT.

39

