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Abstract

For most state-of-the-art estimator methods such as Gaussian processes, high dimen-
sional Bayesian optimization is still a very challenging problem. This thesis studies the
application of neural networks (NNs) as estimators in Bayesian optimization and assesses
if and how they can overcome this curse of dimensionality. Since quantifying the un-
certainty of predictions is key in Bayesian optimization, several methods of representing
predictive uncertainty for NNs are considered.
Specifically, this thesis compares a very recent approach introduced by Heiss et al. (2021)
called neural optimization-based model uncertainty (NOMU), against Deep Ensembles
and MC Dropout, two more established NN-based methods, and Gaussian processes.
Moreover, to increase the performance and robustness of the NN-based estimators, sev-
eral adjustments in the estimation and optimization algorithms are presented.
Experimental evaluations on synthetic data confirm that Gaussian processes outperform
the NN-based methods in low dimensional settings (1D-2D) and show that NOMU per-
forms as good or better than the other NN-based methods. However, the experiments
in higher dimensions suggest that the NN-based methods improve and finally manage
to outperform Gaussian processes with standard configurations. Furthermore, the re-
sults indicate that especially in higher dimensions, NOMU performs robustly as good or
better than the other NN-based methods.
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Zusammenfassung

Für die meisten bereits etablierten Moddelierungs-Methoden wie der Gaussischen Prozess
ist die hoch dimensionale Bayessche Optimierung noch immer eine Herausforderung.
Diese Arbeit studiert die Anwendung von neuronalen Netzwerken (NN) als Modellierungs-
Methode für Bayessche Optimierung und untersucht ob und wie diese den Fluch der
Dimensionalität überwinden können. Da die Quantifizierung der Unsicherheit einer
Schätzung eine Kernrolle in der Bayessche Optimierung spielt, liegt der Fokus auf NNs
welche in der Lage sind ihre eigene Modell-Unsicherheit zu schätzen.
Genauer vergleicht diese Arbeit den sehr neuen Ansatz names neural optimization-
based model uncertainty (NOMU), eingeführt von Heiss et al. (2021), mit den etabliert-
eren NN-basierten Methoden Deep Ensembles und MC Dropout sowie dem Gaussischen
Prozess. Des Weiteren werden mehrer Anpassungen an den Moddelierungs und Opti-
mierungs Algorithmen vorgestellt um die Performanz und Robustheit der NN-basierten
Modellierungs-Methoden zu erhöhen.
Experimentelle Auswertungen auf syntetischen Daten bestätigen, dass der Gaussische
Prozess die NN-basierten Methoden bei Problemen in tiefen Dimensionen (1D-2D) übertrifft
und zeigen, dass NOMU gleich gute oder bessere Resultate liefert als die anderen NN-
basierten Methoden. Die Experimente in höheren Dimensionen jedoch suggerieren,
dass die NN-basierten Methoden sich gegenüber dem mit Standartwerten konfigurierten
Gaussichen Prozess verbessern und es schaffen diesen sogar zu überholen. Des Weiteren
zeigen die Resultate dass speziell in höheren Dimensionen NOMU robustere und bessere
Resultate erzielt als die anderen NN-basierten Methoden.
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Introduction

Machine Learning (ML) and Neural Networks (NNs) are gaining wide popularity in
the recent days due to their increased ease of use and the availability of the required
resources. Both are used as tools for regression tasks, where a trained model approxi-
mates an unknown function to generate output values for new input values, and also in
classification tasks where a trained model describes the separation between data points
with different labels, such that the label for an new input value can be determined.
Generally speaking, NNs can be applied in all sorts of research sectors and industries,
as long as there are enough data points from which the model can learn. However, NNs
are not a new tool and there has been much research put into the architecture of fast
and accurate network models increasing the predictive power.
NNs are quite complex to understand and therefore often considered as black box sys-
tems. Often the networks are just applied as oracles that tell the truth without ques-
tioning the results or knowing the data it was trained on. The accuracy of the prediction
is only considered during the training phase but no longer when making the predictions
on new data. This is however problematic especially with the increasing use of trans-
fer learning (Pan and Yang, 2009) where pre-trained models are retrained for different
purposes or already trained models are just applied without knowing the exact training
setup. Doing so it is very likely that a neural network model is fed with data that are
far from the input space on which the model was trained for. The model will always
give a prediction however in that case the quality of the prediction is questionable since
the model wont be robust for input areas where no training data originate from (Novak
et al., 2018). Following this explanation it is apparent why it is important to be able
to make the model not only predict the target value but also its own internal model
uncertainty. Especially, when the neural network model is used in a highly critical field
of application, like self driving cars, medical diagnosis or fraud detection.

Being able to estimate the function representing the relation of different variables often
one wants execute subsequent task with that function. One example for such an task
is finding the optima of that unknown function, this problem is common in science and
practice. For example which ration of two chemicals results in the strongest reaction or
where on a goldmine is the most gold located. There are multiple optimization schemes
on how to find the optima but all have in common that they need some samples to start
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2 CHAPTER 1. INTRODUCTION

with. Each sample gives more information on how the unknown function might look like
and for easy problems one can just take many samples however there are also problems
where taking a sample requires a lot of resources such as time and money like the noted
examples of the chemicals of the goldmine. Sampling the entire input space would be a
costly operation, therefor other optimization strategies should be utilized.One of those
is the Bayesian optimization (BO) which is an algorithm that takes the prediction of the
function itself and the estimated uncertainty for that prediction into account and as a
result proposes the point where the next sample should be taken (Jones et al., 1998).
This new sample, together with all previous samples, is then used as new information
base for the estimator to improve its model. The BO has the advantages that these
samples are proposed in a manner that reveals the most possible information. As a
result, the unknown function can be optimized without the need of a large amount of
samples, thus BO is used for tasks where there is a fixed budget of evaluation, due to cost
or time constraints. The propose the next sample the BO constructs optimizes the so
called acquisition function which is a combination of the mean and uncertainty estimates.
Consequently to be able to use NNs for BO it is required that the NN-based method also
returns estimates for mean and uncertainty. The classical BO uses a Gaussian process
as estimator to predict the uncertainty and the target function, however this method is
difficult to apply in higher dimensions (Srinivas et al., 2012).
Using NNs that are able to estimate their model uncertainty allows the BO to construct
acquisition functions even in higher dimensions as NNs can work well in with high di-
mensional inputs such as images (LeCun et al., 1998). Since Bayesian optimization, in
its classical form, fails in more than 10 dimension having an alternative solution is really
needed for systems that have an input space with more then 10 dimensions (Li et al.,
2016). Since a large field of application of BO is the hyperparameter tuning of machine
learning tasks, using NNs could allow the BO to optimize the hyperparameters for mod-
els with more than 10 parameters (Snoek et al., 2012). Like this larger Machine learning
models can be optimized rather cost efficient which is relevant since most machine learn-
ing tasks require substantial resources for training and thus it is favourable to not repeat
this process countless times to just find the best hyperparameter configuration.
New fields of applications are possible through the support of high dimensional inputs.
First, it is possible to directly use images as inputs, because each image pixel can be
considered as a new dimension. Second, the neural network formulation of uncertainty
estimation function can help formulate the acquisition functions, which are used for the
Bayesian optimization, in a way such that it can be optimized using a Mixed Integer
Programming solver.
This thesis compares the novel method for uncertainty estimation with neural networks
by (Heiss et al., 2021) called Neural Optimization-based Model Uncertainty (NOMU) with
the Deep Ensemble method by (Lakshminarayanan et al., 2016) and the MC Dropout
method by (Gal and Ghahramani, 2016). The focus of the comparison lies on their
applicability for Bayesian optimization. The experiments in this thesis aim to high-
light characteristics of the different methods in low and high dimensional settings. As
a benchmark for the experiment the classical Gaussian Process is used. The methods
are compared with respect to their accuracy of the found optima when used in com-
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bination with BO. Computational resources and computation time are factors that are
not included in the final analysis. The comparison is based on experiments on a set of
synthetic functions with input dimensions between 1 and 20.
Based on the findings of the first experiments in lower dimensions adjustments are made
to improve the methods and to encourage the escape from local optima. Subsequently
the experiment in higher dimensions (5-20) are aimed to find out to what extend neural
network models with model uncertainty can enable BO in higher dimensions where the
Gaussian process is no longer applicable.

A highly modularized python library is developed to enable a fast and convenient ex-
perimental and analytic setup. This user-friendly library contains implementations of
all three uncertainty-estimating NN-based methods, as well as the Bayesian optimiza-
tion. The different algorithms are set up in a modular way so that for the existing
sub-processes it can be easily switched between different implementations.
Experiments can be setup through a configuration file that defines which method and
sub-processes should be used, and which hyperparameters can be applied. Every sub
process is able to gather information which can be helpful for the analysis. Also it is
possible to store all different network models that are trained in each step of the BO
algorithm. For convenience there is basic data preprocessing included in the library as
well as a specific plotting framework to enable consistent data inspection and interpre-
tation.

The literature for the different fields such as Bayesian optimization and neural network
uncertainties are reviewed in Chapter 2.
Chapter 3 introduces the important concepts of Bayesian probability and explains the
Bayesian optimization algorithm. Additionally the term uncertainty is looked at in more
detail. The estimator method used in this thesis are presented in Chapter 4, beginning
with the NN-based methods before the basics of the Gaussian Process are explained. The
acquisition function as a important part of the BO algorithm are discussed in Chapter 5
together with the different optimizers for the acquisition functions. The experimental
work which has been executed for this thesis is listed in Chapter 6 and final Chapters 7
& 8 summarize the results of this thesis in the conclusions and highlights possible future
work which can be build on the foundations of this thesis.
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2

Literature Overview

2.1 Uncertainty Quantification for Neural Networks

The quantification of uncertainty of NN-estimates has been an active field of research
for a while already. However, there have been several different focus points over various
past works. Early publications such as (Chryssolouris et al., 1996) and (Khardon and
Wachman, 2007) focused on the data noise perspective where the assumption is that the
sampled data may return different target values for the same input if sampled multiple
times. Frénay and Verleysen (2013) give a nice overview of the case when the label,
target values for classification tasks, is noisy and how to deal with that uncertainty.
Conversely, most of the work in that respect aims to remove or reduce the effect of noisy
samples, for example, by detecting outliers in the training data (Sigurdsson et al., 2002).

The perspective of model uncertainty, where the goal is to quantify the uncertainty of
the model itself, irrespective of data noise, for example due to missing training data in
certain regions has only recently been addressed by research groups. Works by Khosravi
et al. (2010) and Pearce et al. (2018) constructed networks with multiple outputs where
some of them are aimed to train upper and lower bound for the uncertainty.

One approach that is often used for quantification of the uncertainty of a Bayesian neural
networks is the variational inference (Graves, 2011; Blundell et al., 2015; Hernández-
Lobato and Adams, 2015). With the help of the inference the posterior distribution over
the model weights is approximated which then represents the model uncertainty. Gal
and Ghahramani (2016) showed that Bayesian inference can be approximated by using
Dropout layers in the NN-architecture. In this case the model uncertainty is a result of
an stochastic forward pass through the NN. More recently the authors have extended
the application of this Dropout based uncertainty estimation to convolutional neural
network to apply it on images (Gal et al., 2017).

Very recently Curi et al. (2020) presented an algorithm which uses hallucinated control
action to control the model uncertainty to achieve an optimistic exploration in the con-
text of reinforcement learning. In reinforcement learning such an optimistic approach
explores actions that are expected to yield high values, so called Q-values. In this context
optimistic can be seen as focusing on the upper bound and thus the algorithm favours
to learn uncertain but high valued action over certain lower valued actions.
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6 CHAPTER 2. LITERATURE OVERVIEW

2.2 Bayesian Optimization

When an algorithm is able to find the optima of a function with the least amount of
evaluations is called to be efficient. By employing some prior assumptions over the ob-
jective function allows BO to be efficient. This prior is based on the Bayes’ theorem
which gives the method its name.
The idea of applying prior beliefs to enhance optimization methods is not a new concept.
The basic theory in global optimization originates from the work of Kushner (1964), and
was further developed by Zhilinskas (1975) and Močkus (1975a). However the theory
did not get much recognition until Jones et al. (1998) combined theory from several
literatures into one paper and showed that in terms of minimal function evaluation the
BO is one of the most efficient approaches. Not only the field of global optimization was
using that approach of using the prior, similar approaches were also found in the field
of mathematical geology where it was called kriging and in the field of statistics (Jones
et al., 1998).

Bayesian optimization is particularly relevant on the domain of global optimization where
the objective function has no know expression and also its derivatives are unknown
(Brochu et al., 2010). Bayesian optimization is based on stochastic processes, Gaussian
processes in particular, which assign a probability distribution over functions. These
distribution can incorporate priors in the form of Kernels. Williams and Rasmussen
(2006) describe these kernels thoroughly and they also make the connection between
Gaussian processes and NNs.

The Bayesian optimization is a wide term and is root to many inherit method such the
efficient Global Optimization also known as Sequential Kriging Optimization (Huang
et al., 2006). As a result of the wide range interpretation of the BO there is a lot of
research in this field where different aspects are being improved. For example the further
reduction of the number of evaluations used which can be achieved by drawing data with
a lower fidelity from a surrogate function to the objective (Huang et al., 2006). Or the
application of BO to constrained or multi-objective optimization (Močkus and Močkus,
1991).

With the recent development in machine learning and the contribution of Snoek et al.
(2012) exploring the usability of the BO for the hyperparameter tuning, the research
around BO grew in relevance. With the black-box characteristics of machine learning
algorithms and their vast complexity and thus non-trivial or no-existing closed form
formulation they are a perfect fit for the application in BO. Additionally for larger
network sizes the characteristic of long training times and thus great evaluation cost
is also given. Further research on the hyperparameter setting has shown that similar
tasks can be optimized together meaning that the function evaluation on one task, so
for one objective function, can also be used for a similar but different objective function
(Swersky et al., 2013). Wang et al. (2020) investigated on the parallel optimization using
Bayesian optimization which got more relevant due to the use of distributed computing

6
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using cloud computing.

Additional to the over all BO research a whole research field on its own is based around
the optimal strategies of finding the next point to evaluate. The next evaluation point is
determined by the optima of the acquisition function which is usually a combination of
the posterior and the uncertainty. The intuitive upper-uncertainty-bound GP-UCB, a
linear combination of mean and uncertainty, is being analyzed by Srinivas et al. (2009).
The most popular acquisition function, the Expected Improvement is investigated by
Jones (2001b). But there are a vast amount of acquisition function variations being
researched on.

It is important to mention that there are plenty more past and current research being
done on the subject, including summary papers and tutorials such as (Frazier, 2018),
(Brochu et al., 2010) and (Sasena, 2002).

2.3 High Dimensional Bayesian Optimization & Performance

Benchmarks

Bayesian optimization is a research field that is very well explored. However classical
BO lacks in ability to solve problems in higher dimensions. It may be well disputed
where exactly the critical value lies for the maximal supported dimensionality however
it can be agreed on that is might be around 10 (Wang et al., 2016), or lower. With the
more recent applications of BO for hyperparameter tuning in machine learning (Snoek
et al., 2012) this excludes models with many hyperparameter from being optimized by
Bayesian optimization.

In the same context of BO for hyperparameter tuning, Malkomes and Garnett (2018)
present an algorithm that uses Bayesian optimization to tune Bayesian optimization
itself. Their algorithms also rely on a uncertainty notation when selecting the next
point of evaluations. They use an ensemble of models to create such a uncertainty
notation and to refine the overall process of the BO.

Another intuitive algorithm for solving the optimization issue in higher dimension by
Moriconi et al. (2020) is to apply the optimization on the lower dimensional sub spaces
and the reconstructing the initial input space.

The issue of high dimensional problem is tackled in the works of Wang et al. (2016).
The proposed approach called REMBO uses random embedding to project the problem
into a different frame. Using this adaption they are able to show that the problems with
large extrinsic but small intrinsic dimensionality can still be solved with BO. Thus with
this approach a system does not need to be manually reduced to its core dimensions,
however this method does still not solve the issue with problems that have high intrinsic
dimensionalities.

Another approach that addresses the high dimensional problems but also the computa-
tional expensiveness of function evaluations is called BOHAMIANN and is presented in
the works of Springenberg et al. (2016). Through the application of Bayesian networks
and subsequent Bayesian inference and scale adaption they achieve an robust optimizer
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8 CHAPTER 2. LITERATURE OVERVIEW

that is also scalable. Their approach is based on Hamiltonian Monte Carlo Methods as
presented in (Chen et al., 2014). For their experiment they focused on the benchmark
setting presented in (Eggensperger et al., 2013) which includes synthetic functions as
well as hyperparameter optimization tasks.
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3

Problem Overview

This chapter gives an overview of the problem of model uncertainty and optimization,
together with the basic formal models of the underlying theory. It begins with the
introduction of the concept of Bayesian probability to build the basis to the probabilistic
deductions used for the Bayesian optimization. Uncertainty plays such a big role in the
Bayesian optimization as well as the probabilistic methods that are used in this thesis,
therefore the term of uncertainty is inspected in more detail and different aspects of
uncertainty are highlighted.

3.1 Bayesian Probability

To understand the concept of Bayesian optimization first the basic concept of the
Bayesian probability has to be introduced. In contrast to the classical probability which
is a physical property of the world, the Bayesian probability is based on a belief about the
frequency of an event (Heckerman, 2008). Instead of estimating the physical probability
by means of repeated sampling, in Bayesian probability a belief is formulated about the
uncertainty of the physical probability after some amount of samples are being taken.
This belief, together with rules of probability, is then used to compute the probability
of the outcome in the next sample (Heckerman, 2008).

For common understanding let’s introduce the following notation. Let’s denote the ran-
dom variable for an outcome or event as θ. Together with the belief or prior information
ξ the uncertainty about the random variable can be expressed by the probability density
function p(θ|ξ). The distribution after drawing samples is called posterior distribution
p(θ|D) with D being the set of samples. Having defined these variables now the Bayesian
theorem can be used in conjunction with the Bayesian rule to derive a formula for the
Bayesian probability of the random variable θ given the set of samples D and the prior
belief ξ, p(θ|D, ξ).

Theorem 1 (Bayes’ theorem). The posterior probability of a model M, given some
evidence E is equal to the likelihood of the evidence E appearing given a that model
M is true times the prior belief about the probability of the model P(M) divided by the

9



10 CHAPTER 3. PROBLEM OVERVIEW

independent probability of the evidence E appearing.

P (M | E) =
P (E |M)P (M)

P (E)
(3.1)

The probability distribution of the random variable given the previous samples and the
prior knowledge is given by:

p(θ|D, ξ) =
p(θ|ξ)p(D|θ, ξ)

p(D|ξ)
(3.2)

where the term p(D|θ, ξ) is known as the likelihood function of the sampling.
Using the joint probability distribution it follows that p(D|ξ) can also be expressed as:

p(D|ξ) =

∫
p(D|θ, ξ)p(θ|ξ)dθ (3.3)

This probability p(D|ξ) can be interpreted as the chances of certain samples in D to
appear when the prior belief ξ is applied. Thus one can predict which future points are
more likely to be sampled.

3.2 Bayesian Optimization

For Bayesian optimization the goal is to optimize an unknown function f within a given
limit of l function evaluations.

x∗ = argmax
x∈X

f(x) and x̂∗ = argmax
x∈Dl

f(x) (3.4)

where:

x∗ is the true, analytical optima of the target function f

x̂∗ is the found optima as result of the Bayesian optimization

Dl is the set of point-samples after l function evaluations

It is important that the optimization algorithm converges (x̂∗ −→ x∗) within the given
number of samples to have a successful optimization.
Bayesian optimization is based on the uncertainty definition introduced in the previous
Section 3.1. However instead of assuming the random variable θ to be a numerical value
it is now considered to be function itself, the random function. This random function
is also following the rules of a certain distribution which is defined by the prior belief,
previously noted as ξ. Each of the samples is a new function, which is a regression result
through the point-samples (D). All function samples act as one sample in the Bayesian
formulation from equation 3.2. From the probability distribution of this random func-
tion the mean function µ(x) can be derived as well as uncertainty function σ(x). Both
of these functions have a closed form formulation. Thus, the Bayesian optimization can

10



3.3. UNCERTAINTY EXCURSION 11

optimize the mean function µ(x) with the use any optimization methods, such as Grid-
search, Brent-Search or others. The input value of the resulting optima is then used
as the input to the next function evaluation. However rather than directly optimizing
the mean function µ(x) the Bayesian optimization combines the mean and uncertainty
functions together into a so called acquisition function. In this acquisition function it is
possible to favor points where there is a lot of uncertainty about the function value over
the highest predicted mean value. There are plenty different formulations of such acqui-
sition functions. Section 5.1 discusses the most common acquisition functions which are
also used in this these in more detail.

Algorithm 1: Bayesian Optimization

Data: [x1, ..., xl] = Dl
Result: ŷ∗ := guess for maxx∈X f(x)

1 N := number of BO steps;
2 n = 0;
3 while 0 ≤ n ≤ N do
4 train the estimator with the given samples Dl+n and their function

evaluations;
5 optimize the acquisition function, use mean and uncertainty estimates µ̂(x),

σ̂(x) of estimator =⇒ x∗;

6 add sample x∗ to the sample set =⇒ Dl+n+1;

7 end

8 ŷ∗ = maxx∈Dl+N+1 f(x)

In classical Bayesian optimization the method of regressing the point-samples (part of
line 5 in Algorithm 1) is the Gaussian process. This regression method is introduced in
more detail in Section 4.2. However there are many other methods of regression that
can be used and most modern ones are based on NNs, as shown in Section 4.1.

As previously mentioned, optimizing the evaluation of the acquisition function is less
expensive than optimizing the underlying target function. Consequently, the choice of
optimization schemes is much wider since they do not have to be as efficient. There has
been plenty of research about which optimization schemes work best for which situa-
tion (Wilson et al., 2018). Section 5.2 gives a brief overview over the most important
acquisition function optimizers relevant for this work.

3.3 Uncertainty Excursion

Uncertainty plays a key role in this thesis. It allows to asses the confidence of neural
network predictions and, in combination with BO, allows for confidence guided search
and thus enables exploration. However, uncertainty is not that clear of a term. There
are different understandings of uncertainty that have to be distinguished for this work.

11
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When doing regression, the goal is to find a model M such that the following holds:

M(xi) = yi = f(xi) + σ (3.5)

where f is the true, but unknown function, xi and yi are the input and the respective
output values of the samples and σ is the noise. Noise can be the result additional
explanatory factors that are not respected in M or inaccuracies in the measurement of
yi (Pearce et al., 2018). If the evaluation of a certain sample always returns the same
target value, usually the data is considered to be noiseless. However, in practice, due to
measurement errors or other inconsistencies, one should always consider data noise or
data uncertainty. Similarly, the model estimates can also depend on the model param-
eters (i.e., the samples a models was trained with) which results in different estimates
for the same inputs, meaning the model is not certain about the estimation. In such
cases, one can speak about model noise or model uncertainty. If the regression estimate
f̂(x∗) of a new sample x∗ is the result of a stochastic process it is the result of a pos-
terior distribution p(f(x∗)|D). In this case there is always some uncertainty attached
to the distribution which results in model uncertainty. Thus the overall uncertainty σ
can be split into the data noise σn (aleatoric uncertainty) and the model uncertainty σf
(epistemic uncertainty).

σ2
y = σ2

n + σ2
f (3.6)

In the setting of the ongoing sampling during the BO these two sources of uncertainty
have different characteristics. First, data noise does not increase or decrease depending
on the number of evaluations, but the model uncertainty is influenced by the number
of samples. The expected behaviour is for the uncertainty to decrease when more data
points are fed to the regression, as shown by Lakshminarayanan et al. (2016)1. The
difference between model and data uncertainty can made clearer when looking at uncer-
tainty intervals (Heiss et al., 2021).

Definition 1 (Credible Intervals (CI)). An α-CI at xi ∈ X with α ∈ (0, 1), is defined
as an Interval I such that p(f(xi) ∈ I|D) = α

Definition 2 (Prediction Interval (PI)). An α-PI at xi ∈ X with α ∈ (0, 1), is defined
as an Interval I such that p(yi ∈ I|D) = α, where yi = f(xi) + σn

The model uncertainty originated from the probabilistic process behind the estimation
method and is always present is such models. The data noise however depends on the
data generating process which is problem specific and not related to the estimator. As a
result, it is possible to have problems that do not have any data noise, in which case the

1In (Lakshminarayanan et al., 2016) different terms are used such as calibration and out-of-distribution.
In simple words calibration describes the difference between predicted uncertainty by the model and
the true uncertainty which is encoded in the data. Out-of-distribution can be explained as the effect
of increasing uncertainty when the input data is shifted away from the data that the model was
trained on.

12



3.3. UNCERTAINTY EXCURSION 13

Prediction Interval equals the Credible Interval. Throughout this thesis only noiseless
regressions are taken into account, where it assumes no data noise and the only effect is
the model uncertainty itself.

13





4

Probabilistic Methods in Machine
Learning

In this chapter all main NN-based estimators are formally introduced. Namely these
are the neural-optimization based Model-uncertainty (NOMU), the Deep Ensemble (DE)
and the Monte Carlo Dropout (DO) approach. The Gaussian process (GP) is also
introduced as a widely used probabilistic method, which however is not based on NNs.
For all estimators the formal definition is given as well as the basic theoretical reasonings.
In addition important characteristics for this thesis are highlighted and also adjustment
to the original formulations are made to fit the setting of this thesis.

4.1 Uncertainty Estimation for Neural Networks

Neural networks and deep neural network got a lot of attention in the past years ergo
there has been a lot of research effort on them. As a result the prediction performance
increased considerably. However despite all the research efforts, it is still an unsolved
problem how one can quantify the predictive uncertainty on NNs (Lakshminarayanan
et al., 2016). This section introduces multiple approaches which allow NN-models to
quantify their own model uncertainty. First the very recent NOMU approach of Heiss
et al. (2021) is introduced followed by the Monte Carlo Dropout method and the Deep
Ensemble method.

4.1.1 Neural optimization-based Model Uncertainty (NOMU)

The Neural Optimization-based Model Uncertainty (NOMU) approach by Heiss et al.
(2021), in contrast to the later introduced Deep Ensembles and MC Dropout methods,
actively learns the uncertainty bounds during the training and does not derive the un-
certainty from the trained network itself. To achieve this, the NOMU defines a network
architecture which has two outputs, one for the model prediction f̂ and the other for
the model uncertainty σ̂. When there is data noise, then the model prediction f̂ can be
interpreted as mean prediction µ̂. For reasons of consistency from now on always µ̂ is
used to denote the model prediction, even for noiseless data. The following theoretical
foundations are based on the work of Heiss et al. (2021).
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16 CHAPTER 4. PROBABILISTIC METHODS IN MACHINE LEARNING

Network architecture

The architecture of the NOMU model, as described in (Heiss et al., 2021), consists of
two parallel networks. One of these networks will learn the target function µ̂ and will
further be referred as the main-net. The other network is referred as the side-net and
is responsible for training the model uncertainty σ̂. The input to the whole model is
forwarded to the main and the side-net equally. Both, side and main network have one
output each. However the output of the main-net is purely based on the last hidden layer
LK−1 of the the main-net itself. The side-net’s output however depends on the output
of the last hidden layer of both the side-net and main-net. The connection from the
main-net to the side-net’s output allows for implicit transfer learning and is indicated in
Figure 4.1 by the green dashed lines. Consequently the uncertainty (output of the side-
net) can also depend on the model prediction. Speaking in word of functions, this means
that the uncertainty can vary depending on the function value itself. Like this, regions
of interest for the learned function, will also be regions of interest for the uncertainty.
The exact architecture of main and side-net can vary. The number of layers and nodes
per layer can be adjusted depending of the problem that it faces. There is no constraint
that forces main and side-net to have the same architecture, so in principal they can
differ is number of layers and number of nodes per layer. For this thesis however main
and side-net will always have exact the same structure.

Figure 4.1: NOMU network architecture. Illustration of the network architecture
of the NOMU method with the main and side-net structure and the implicit
transfer learning connection.

The whole architecture with both, side and main-net, uses the Rectified Linear Unit
(ReLU) activation function for all nodes. The activation function in NNs is responsible
to transform all the summed up inputs of an node into its output (Figure 4.2). In the

16



4.1. UNCERTAINTY ESTIMATION FOR NEURAL NETWORKS 17

case of the ReLU activation if the sum of the inputs is positive then the output is equal
to that sum. If it is negative, then the output is zero (ReLU(x) ≡ max{0, x}). The
architecture is trained with T epochs of gradient decent and with a ridge regularization
parameter λ > 0. Consequently, the resulting loss, including the regularisation is defined
as follows:

Lfinal := LNOMU + λ‖w‖22 (4.1)

By adding the regularization factor together with the L2-norm of the weight vector en-
courages the model to assign smaller weights if possible and makes the regression a ridge
regression. As a result by assigning zero weight instead of a small weight to some of the
nodes inputs the model becomes less complex since less variables have to be considered
during the calculations of the node output (Figure 4.2). Also using regularization the
model usually tend to generalize better and over fit less.

Figure 4.2: Neural network node. Illustration of network node with output of previ-
ous nodes as input as well as the weights. As activation the ReLU is used as
seen in the formula for the output.

The intuitive idea behind the NOMU method can be explained using the analogy to an
elastic wire which represent in this case the uncertainty. A key aspect of NOMU is the
use of augmented data points which act as additional training points but only for the
prediction of the uncertainty and not for the model prediction. These augmented data
points have a constant force that pulls up the uncertainty. Additionally the loss is con-
structed in a way that everywhere where there are (real) training points the uncertainty
”wire” is fixed at the model prediction1 but in regions without training data the uncer-
tainty wire is elastic and the applied ”force” results in an increase of the uncertainty.

1In the noiseless case the uncertainty should be zero at the sample point itself since the sample itself
provides the evidence.
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18 CHAPTER 4. PROBABILISTIC METHODS IN MACHINE LEARNING

Figure 4.3: NOMU elastic wire intuition. Illustration of the intuitive concept of an
elastic wire as the upper uncertainty bound

The idea of the augmented data points is motivated by a desired characteristic that the
model uncertainty in regions with less training points should be larger than where there
are many training points. This desiderata is listed in the work by Heiss et al. (2021)
as Desiderata D1 . Another desiderata that is related to the augmented data points
is D3 which states that for the noiseless case it should be possible to have zero model
uncertainty at training points. To really enforce these characteristics however a fitting
loss function has to be constructed.

Loss

Given a training process where Dtrain is the set of training points and µ̂ is the model
prediction and σ̂ is the predicted model uncertainty. Then the loss function of the
NOMU method is defined as follows:

LNOMU :=
∑

(x,y)∈Dtrain

`(µ̂(x), y)

︸ ︷︷ ︸
(i)

+πsqr ·
∑

(x,y)∈Dtrain

(σ̂(x))2

︸ ︷︷ ︸
(ii)

+πexp ·
1

λs(X )

∫
X
e−cexp·σ̂(x)dx

︸ ︷︷ ︸
(iii)

(4.2)

The first sum (i) ensures that the model prediction µ̂ is as close as possible to the true
value given by the sample target y. ` is any pointwise error function that ensures that
the regression task is learned. The state of the art error function that is used for this is
the squared loss.
The second sum of the loss (ii) controls the prediction of the model uncertainty at the
sample points. In general the model uncertainty at a sample point should be as small as
possible. For a problem setting without data noise it even should be zero. Including the
σ̂(x)2 output in the loss guides the model to keep the uncertainty small at the sample
points.
However with only (i) and (ii) only the sample points are considered in the loss. To
make use of the augmented data points a third term to the loss is added. This third
part (iii) ensures that the uncertainty σ̂ is not zero for the augmented data points as
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4.1. UNCERTAINTY ESTIMATION FOR NEURAL NETWORKS 19

the goal is to have non-zero uncertainty in regions where there are no samples.

In practice the integral in (iii) is approximated with a Monte-Carlo integration using
the augmented data points mentioned above as the Monte-Carlo samples. With the
selection of the squared loss error function in (i) and the Monte-Carlo integral using L

uniformly distributed augmented data points (Daug := {x1, ..., xL}
i.i.d∼ Unif(X )) this

results in the following practical loss formulation.

LNOMUpractical
:=
∑

(x,y)∈Dtrain

(f̂(x)− y)2

︸ ︷︷ ︸
(i)

+πsqr ·
∑

(x,y)∈Dtrain

(σ̂(x))2

︸ ︷︷ ︸
(ii)

+πexp ·
1

L

∑
x∈Daug

e−cexp·σ̂(x)dx︸ ︷︷ ︸
(iii)

(4.3)

Each of the different sums is weighted relative to the others. As a result the parameter
for the first sum is fixed to one and for the second and third sum the hyper parameter
πsqr and πexp are introduced. With πsqr it can be controlled how strictly the uncertainty
at the sample points should be forced to be zero. πexp controls how much the augmented
data points are weighed against the sample points.

Mix Integer Programming Support:

One major advantage of the NOMU method is that it predicts the model uncertainty with
its own neural network (side-net). This network expression allows solving for its optima
using a Mixed Integer Programming Solver such as CPLEX (IBM, 2021). More specific
explanations how to optimize the uncertainty using the MIP follow in Section 5.2.3. This
applicability of the MIP can be useful for subsequent tasks operated on the uncertainty.
The straight forward example for this is the acquisition function optimization in the BO.
Instead of having to sample points repeatedly the MIP can be used which calculates the
optima based on the NN-structure and its learned weights. This it especially promising
in higher dimensions where the number of samples needed for a reliable optimization
grows fast.

Uncertainty Bounding activation:

The NOMU method applies a specific activation function to the output of the side-net,
thus the predicted model uncertainty. This activation function T incorporates a notion
of maximal and minimal uncertainty (`min, `max)

T (σ) := `max

(
1− exp

(
−(ReLU(σ) + `min)

`max

))
(4.4)

Using this activation it is ensured that the uncertainty is bounded. The third part (iii)
of the loss function (Equation 4.3) tries to assign as high of value as possible to the
uncertainty output for the augmented data points. Therefore, an upper bound to the
uncertainty is useful because else it can occur that, especially at the boundaries of the
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20 CHAPTER 4. PROBABILISTIC METHODS IN MACHINE LEARNING

input space, the uncertainty grows extremely large if there is a lack of sample points.
Since the mean width of the uncertainty bounds are used as a metric in this thesis, letting
the uncertainty grow to big at the boundaries would lead to a miss interpretation of the
mean width as most of its value would come from the boundary. Also when progressing
with BO very big uncertainty values at the boundaries result in acquisition functions
which always suggest boundary points to be the next points to evaluate. Evaluating
boundary point generally reveals less information than a point inside the input space.
For an intuitive understanding of this one can consider again the illustration of the
NOMU as an elastic wire. Not only can the augmented data points be considered as
constant force pulling up but also the sample point can be considered as hooks where
the wire is fixed. When adding a sample to a situation where the elastic wire previously
was above the sample position, then the hook pulls down the wire compared to the
previous situation. The information gained can be interpreted as the number of wire
segments that change position by adding the new sample. When the new sample is
at the boundary half of the segments affected lie outside the input space and are thus
irrelevant.
Besides adding an upper bound to the uncertainty, the activation also imposes a lower
bound. Such a lower bound can increase numerical stability since values close or equal
to zero can result in problematic behaviour.

However using the above activation introduces some non-linearity into the formulation
and thus it is no longer possible to apply Mixed Integer Programming. Thus there is a
secondary formulation of the activation which only use linearities in form of ReLU.

T (σ) := `min +ReLU(σ − `min)−ReLU(σ − `max) (4.5)

4.1.2 Monte Carlo Dropout

In their work Gal and Ghahramani (2016) show that applying a dropout layer to each
weight layer is equivalent to a probabilistic deep Gaussian Process (Damianou and
Lawrence, 2013).

By adding a dropout layer to a neural network layer the nodes in that layer are dropped
randomly with a certain probability p. In other words in every pass for each node a
independent coin is tossed. This coin has a probability of p to show heads. If heads is
shown then the node is ignored by setting its output to zero. As a result the number
of active nodes which contribute to the sum inside the activation function vary from
training pass to training pass and also a certain node only sometimes plays a role in the
network. Usually dropout is used in NNs to avoid overfitting (Srivastava et al., 2014).

The findings of Gal and Ghahramani (2016) are completely independent of the underly-
ing network structure, meaning this method can be applied to any network architecture
to enhance it with a uncertainty estimating behaviour. In the following the a brief in-
troduction into the MC Dropout methods and its derivation is given as in (Gal and
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Ghahramani, 2016).

The goal is to find a formulation for the loss function of a network applying dropout
to each of its j = 1, ..., L layers using Wj to denote the weights and bj the bias of
that layers. We denote ŷ as the output of the NN-model. Given that the underlying
network (without dropout) has a loss function L(·, ·) the combined loss for the network
with dropout and xi, yi the input output pairs for 1 ≤ i ≤ N is given by.

LDropout :=
1

N

N∑
i=1

L(yi, ŷi) + λ

L∑
j=1

(‖Wj‖22 + ‖bj‖22) (4.6)

Once again λ denoted the weight decay of the L2 regularisation.
MC Dropout can be seen as some sort of variational inference for a Bayesian NN. Thus
let’s denote ω = {Wi}Li=1 the set of weights in the neural network with L layers which
also can be viewed as set of random variables in a probabilistic model. Now the predictive
distribution for a new input-output pair (x∗, y∗) is given by:

p(y∗|x∗,X,Y) =

∫
p(y∗|x∗, ω)p(ω|X,Y)dω (4.7)

In variational Inference a variational distribution q(ω) is defined which should approxi-
mate the prior p(ω|X,Y ) as closely as possible. This can substituted into Equation 4.7
to result in:

p(y∗|x∗,X,Y) =

∫
p(y∗|x∗, ω)q(ω)dω (4.8)

To ensure that the approximation q(ω) ≈ p(ω|X,Y) is as accurate as possible one can
use the Kullback-Leiber (KL) divergence which measures the dissimilarity between two
distributions. Hence the goal is to minimize KL divergence.

argmin
q

KL(q(ω)‖p(ω|X,Y)) (4.9)

Instead of minimizing the KL divergence however, it is also possible to maximize the log
evidence lower bound:∫

q(ω)log(p(Y |X,ω))dω −KL(q(ω)‖p(ω)) ≤ L = log(p(Y |X)) (4.10)

Where L is the log-likelihood. This can now be viewed as the new objective. To have a
consistent notion of loss this can be negated to get the loss objective for the variational
Inference. Conversely to the objective for the loss the goal is to minimize it.

LV I := −
(∫

q(ω)log(p(Y |X,ω))dω −KL(q(ω)‖p(ω))

)
(4.11)

Gal and Ghahramani (2016) show that this variational inference objective (LV I) is equiv-
alent to the Gaussian process approximation of a NN objective when using Dropout as
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the regularisation (LDropout). Training a network with dropout is equivalent to perform-
ing variational inference thus training a network is also equal to drawing a sample from
the variational distribution q(ω). The predictive uncertainty p(y∗|X,Y ) thus approxi-
mates the expectation over neural network solution derived by training with Dropout.
This expectation can then again by approximated using Monte Carlo.

p(y∗|X,Y ) =
1

M

M∑
m=1

p(y∗|x∗, ωm) (4.12)

where m is one neural network result of a training with an individual dropout pattern.
Given a neural network which is trained using dropout methods, denoted as NNm(x),
the mean prediction µ̂(x) and the uncertainty prediction σ̂2(x) can be noted as follows.

µ̂(x) :=
1

M

M∑
m=1

NNm(x)

σ̂(x)2 :=
1

M

M∑
m=1

(NNm(x)− µ̂(x))2 + σ2
n(x)

(4.13)

(4.14)

To be able to derive the uncertainty and the mean prediction using MC dropout the
same trained model has to be evaluated M times for each guess for µ̂(x) and σ̂2(x). The
term σ2

n(x) represents the part of the data noise in the case for a noisy setup in the
noiseless case it resolves to zero.
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4.1.3 Deep Ensembles

The theory behind the Deep Ensembles as described by Lakshminarayanan et al. (2016)
is multi fold. First the concept of ensembles is used and then several additions are made
by defining proper scoring rules (loss) and training processes.

The concepts of using ensembles is not all that new. Using ensembles means that rather
than training only one single network, multiple network are trained and then combined.
Due to some random initialisation which differ between the different training processes
the resulting networks do not always produce exactly the same predictions and do not
have the same weights. Perform model combination on that ensemble one gets a more
robust and thus more powerful model. It is worth mentioning that model combination
performed by ensembles contrast the Bayesian model averaging (BMA) which performs
only soft model selection and thus tries to find the single best model Lakshminarayanan
et al. (2016) within the set of models. According to Lakshminarayanan et al. (2016)
one can treat the ensemble as a mixture model which is uniformly weighted. For an
ensemble with M network models the predictions can be combined into a mixture of
Gaussian distributions.:

p(y|x) =
1

M

M∑
m=1

pθm(y|x, θm) (4.15)

where θm are the parameters of the m-th model in the ensemble. From this mixture we
can draw again an mean µ∗ and uncertainty σ∗.

µ∗(x) =
1

M

M∑
m=1

µθm(x)

σ∗2(x) =
1

M

M∑
m=1

(σ2
θm(x) + µ2

θm(x))− µ∗2(x)

(4.16)

(4.17)

The resulting model thus predicts then according to a normal distributionN (µ∗(x), σ∗2(x)).
Using this ensemble formulation it is possible to receive a uncertainty estimation even
if every single network model has only one output and hence does not incorporate any
uncertainty by itself like the NOMU model does. The method of model combination is
thus also possible for a setting without data noise where the resulting uncertainty is a
pure epistemic uncertainty. However Lakshminarayanan et al. (2016) base their work on
a setting with data noise. As a result normally distributed data is assumed. To be able
to incorporate the data variance a model architecture with two outputs in the last layer
is used. One output for the mean µθm and one for the uncertainty σθm. Each observed
value thus is just a sample form a Gaussian distribution. The prediction which the
model makes is the mean and the variance of that said Gaussian distribution. However,
having two network output, standard loss functions like MSE are no longer applicable,
thus Lakshminarayanan et al. (2016) suggest the negative log-likelihood (NLL).
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LNLL := −log(p(y|x)) =
log(σ2(x))

2︸ ︷︷ ︸
(i)

+
(y − µ(x))2

2σ2︸ ︷︷ ︸
(ii)

+C (4.18)

This loss is used individually for each network model in the ensemble during training.
The intuition behind the negative log likelihood is that the numerator of the second term
(ii) makes sure that the mean prediction µ is as close to the observed y as possible. The
denominator of that term allows that the deviation of the mean from the observed y can
be large. However in this case the variance σ2 has to be large as well. This allows the
model to predict large variance in regions where noisy observations are made. The first
term ensures that the model does not just scale up the variance to infinity to always
negate the effect of the deviation of mean to the y. However, the first term (i) uses the
logarithm of the variance predicted by the model and the model in theory is allowed
to predict negative or zero values. Thus, for numerical stability it is required that the
σ used in the log likelihood is always positive. This can be achieved by applying the
softplus function to the variance before using it in the NLL.

fsoftplus(x) = log(1 + exp(x)) (4.19)

Noiseless Setting

As already indicated the Deep Ensembles as described by Lakshminarayanan et al. (2016)
focus on the case where the observation can be noisy. For this thesis however the focus
lies on noiseless data were exact function evaluations are assumed. In this case the
formulation (Equation 4.18) is no longer applicable because using negative log-likelihood
can not ensure zero variance at the observation and therefore some modifications to the
loss have to be made. First of all the network architecture is changed to only return
one prediction that is the mean. Predicting the variance is no longer meaningful since
all training data will always have zero variance. However there is another mechanism
to ”produce” uncertainty without having a secondary network output. The state of the
art Mean Squared error (MSE) loss function can be used.

LMSE :=
1

M

M∑
i=1

(µ̂i(x)− yi)2 (4.20)

where µ̂i(x) is the prediction of the network, yi is the true function value for each of the
training points xi and M is the number or models in the ensemble.

For the noiseless case the Deep Ensemble method that is used in this thesis is mainly
based on the model combination where all the models are combined to produce a joint
distribution similar to the MC Dropout model.
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4.2 Gaussian Process

Section 3.1 and 3.2 presented that the Bayesian optimization employs some kind of
prior belief about the characteristics of the target function. The most commonly used
modeling methods for this prior is the Gaussian process, an extension to the multivari-
ate Gaussian distribution to an infinite-dimensional stochastic process (Brochu et al.,
2010). While the Gaussian distribution is a distribution over point samples, the Gaus-
sian process is a distribution over the function space. Thus, also the mean and the
covariance are not numerical values but rather functions. This probability of distribu-
tion over the random functions f(x) = (f(x1), ..., f(xN )) is fully defined by the mean
function µ = (µ(x1), ..., µ(xN )) and covariance matrix Kij = k(xi, xj) and N being the
multivariate normal distribution.

P (f |X) = N (f | µ,K) (4.21)

The goal is to get mean and uncertainty for a new sample given some prior belief and
the previous samples. Let’s use t as counter for our Bayesian optimization steps. For a
given step t we have xt = (x1, ..., xNt) samples and the corresponding random function
ft and the observations Dt. Given a new sample x∗ we can combine it with its random
function f∗ and the the previous observations D1, ...,Dt into a joint distribution.

f1
...
ft
f∗

 ∼ N


µ(x1)

...
µ(xt)
µ(x∗)

 ,

k(x1,x1) . . . k(x1,xt) k(x1,x

∗)
...

. . .
...

...
k(xt,x1) . . . k(xt,xt) k(xt,x

∗)
k(x∗,x1) . . . k(x∗,xt) k(x∗,x∗)


 (4.22)

We can compact the Equation 4.22 using the following identities:

K =

k(x1,x1) . . . k(x1,xt)
...

. . .
...

k(xt,x1) . . . k(xt,xt)

 ,k =

k(x1,x
∗)

...
k(xt,x

∗)

 (4.23)

Additionally we can simplify Equation 4.22 with the assumption that the prior mean
µ(x) = 0 and µ(x∗) = 0 [

f
f∗

]
∼ N

(
0,

[
K k
kT k(x∗,x∗)

])
(4.24)

By applying the Sherman-Morris-Woodburry formula, as explained by Williams and
Rasmussen (2006), we get:

P (f∗ | Dt, x∗) ∼ N
(
µt(x

∗ | Dt), σt2(x∗ | Dt)
)

(4.25)

with

µt(x | Dt) = kTK−1f

σt
2(x∗ | Dt) = k(x∗,x∗)− kTK−1k

(4.26)
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These are now the predictions for the mean and the uncertainty for a new sample at x∗.

Noise

The above formulation only holds when we do not encounter any data noise like in this
thesis. However, in practice often the evaluation of the function contains some noise
which can be caused by some external influence to the measurement which can not be
prevented. In this case the function evaluation f(x) is perturbed by noise. As a result
we write fnoisy(x) = fnoiseless(x) + ε. Usually the assumption is posed that the noise is
normal distributed with N

(
0, σn

2
)
. So we can reformulate Equation 4.27 into:[

f
f∗

]
∼ N

(
0,

[
K + σn

2I k
kT k(x∗,x∗)

])
(4.27)

with

µt(x
∗ | Dt) = kT [K + σn

2I]−1f

σt
2(x∗ | Dt) = k(x∗,x∗)− kT [K + σn

2I]−1k
(4.28)

4.2.1 Kernels

As it becomes quite obvious, the covariance function is a very crucial part of the Gaussian
process. The choice of the covariance function, often referred as kernel, has influence
on many aspects of the drawn function samples for example smoothness (Brochu et al.,
2010). So the kernel basically encodes the prior that the model has about the target
function.

Squared Exponential Kernel

The probably most common kernel is the squared exponential kernel (SE), also called
Gaussian Kernel or Radial Basis Function (RBF). However, this kernel is actually quite
naive since all divergences of all features of the input x affect the covariance equally
(Brochu et al., 2010).

k(xi, xj) = exp(− 1

2θ2
‖xi − xj‖2) (4.29)

The hyperparameter θ, known as length-scale parameter, controls the width of the range
from which evaluated points are considered to make the prediction (Williams and Ras-
mussen, 2006). A small length-scale allows the random function to oscillate rather fast
but also bears the risk of overfitting.

Matérn Kernel

A more advanced but also widely used kernel, especially for BO is the Matérn kernel.
(Matérn, 2013) It adds a smoothness parameter ζ.
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k(xi, xj) =
1

2ζ−1Γ(ζ)
(2
√
ζ‖xi − xj‖)ζHζ(2

√
ζ‖xi − xj‖) (4.30)

where Γ(·) is the Gamma function and Hζ(·) is the Bessel function (of order ζ). If we
choose a very large ζ then the Matérn kernel acts like the squared exponential kernel
since for ζ →∞ the kernel is equal to the squared exponential. Where as for ζ = 0.5 it
es equal to the unsquared exponential kernel (Brochu et al., 2010).

White Kernel

The White Kernel or White Noise kernel is not to be considered as a real kernel. It is
more like an modification to existing kernels. It primarily is used when multiple kernels
are combined like in the python implementation of the Gaussian process by Sklearn2

which is used for this work. In such a case the Withe Kernel is used to explain the noise
of the signal as independently and identically normally-distributed. Thus this kernel
(adaption) is only used for a noisy setting and thus is not used in this thesis3.

k(xi, xj) =

{
δ, if xi = xj

0, otherwise
(4.31)

where δ is the noise level.

2Sklearn is a Python library with various machine learning algorithms for regression, classification,
clustering and much more.

3Despite not being used in this thesis the implementation developed for this thesis does support the
White Kernel.
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5

Acquisition Functions in Bayesian
Optimization

Acquisition functions play a key role in the Bayesian optimization. Their formulation
guides the algorithm in its searching phase.
This chapter discusses the most common formulations for acquisition functions and
presents possible algorithms for optimizing them.

5.1 Acquisition Functions

This section introduces the Upper Bound acquisition function, together with the state
of the art acquisition functions Expected Improvement (EI) and Probability of Improve-
ment (POI). Since the acquisition function responsible for guiding the search and propos-
ing the new sample points it is a crucial part of the BO algorithm and depending on
formulation of acquisition function the trade off between exploration and exploitation
can be made. Exploration means that regions of the input space from which previously
no samples where taken are being sampled now, so that unknown regions are explored.
Exploitation on the other hand means that for a region that is already explored the
optimal point is search for by taking relatively small steps.

5.1.1 Upper Bound

The most basic acquisition function is the Upper Bound function which is a linear com-
bination of the mean µ(x) and the uncertainty σ(x).

UB(x) = µ(x) + β ∗ σ(x) (5.1)

In its most basic form the factor β is set to one. In this case the Upper Bound acquisi-
tion function is just the sum of mean and uncertainty. For minimization problems the
equivalent would be the lower bound where the uncertainty is subtracted from the mean.
This formulation is very intuitive as the area between the upper and the lower uncer-
tainty bound is the area where target values are expected. As a result the upper bound
maps each input to the optimal target value to be expected, even with low probability.
So if such a point is evaluated it has for sure the highest chance to be better than the
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highest previous sample. Since the mean prediction as well as the uncertainty, are taken
into account it is possible that a point has higher acquisition value while having a lower
mean prediction just because the uncertainty tells it that the estimator is really unsure
about the mean prediction.

5.1.2 Probability Of Improvement

Probability of Improvement (POI) is another basic acquisition function suggested in the
work of Kushner (1964). The POI is basic in its goal of finding the point which is
most probable to have a function value that is higher than the highest past function
evaluation, called incumbent x+.

PI(x) = P (f(x) ≥ f(x+)) = Φ

(
µ(x)− f(x+)

σ(x)

)
(5.2)

with Φ(x) being the cumulative distribution function (CDF)

As a result it does not really matter how big the mean prediction is of that point as
long as it is most probably higher than the incumbent. Thus this acquisition function is
clearly focused on exploration since even points that are infinitesimal greater than the
incumbent are valid points to explore.

To balance the exploration an additional trade-off parameter ξ ≥ 0 can be added to
balance between exploration and exploitation. Kushner (1964) recommends to not use a
constant value for that trade-off parameter but rather start with a fairly high value for
ξ and then schedule a decay. The BO will then start with much exploration in the first
steps whereas in the last steps it will focus more on the exploitation. The formulation
with trade-off parameter looks as follows.

PI(x) = P (f(x) ≥ f(x+) + ξ) = Φ

(
µ(x)− f(x+)− ξ

σ(x)

)
(5.3)

5.1.3 Expected Improvement

The most established acquisition function is the Expected Improvement (EI). EI also con-
siders the probability of improvement however it additionally accounts for the magnitude
of improvement. The EI formulated by Močkus (1975b) looks the following:

EI(x) = (µ(x)− f(x+))Φ(Z) + σ(x)φ(Z) (5.4)

where φ is the probability density function (PDF) and Φ is the CDF and Z is a variable
defined as

Z =
µ(x)− f(x+)

σ(x)
(5.5)
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5.2 Optimization of Acquisition Function

After explaining the acquisition function formulation, this section discusses the schemes
for optimizing them.

In contrast to Bayesian optimization, for the acquisition function optimization it is
assumed that the function evaluation is cheap and fast. Thus taking more samples in
favour of getting a more accurate solution is accepted, however accuracy is not crucial.
Even if the optimizer does not find the real, global optima of the acquisition function,
local optima will still yield much information which will give an improvement in the
Bayesian optimization step. To begin with the very intuitive Grid Search algorithm is
explained and its characteristics are highlighted. Since the Grid Search algorithm suffers
greatly under the curse of dimensionality this thesis uses the DIRECT algorithm for the
higher dimensions which is also discussed in thus section. In the end the Mixed Integer
Programming is explained which can be used to optimize the acquisition function when
it can formulated as system of objectives and constraints. As shown in (Fischetti and
Jo, 2018) and (Weissteiner and Seuken, 2020) neural networks can also be represented
by such a system and thus can be optimized using a Mixed Integer Programming solver.

5.2.1 Grid Search

Gird Search is the very basic approach where the input spaces is sectioned into a grid.
This means for every dimension a certain amount of equidistant points are fixed on the
input range. The result is a grid or a mesh defined by the points where the grid lines
or mesh lines intersect. These are the samples that are being used. Like this the whole
input space in sample with equidistant points. The resulting function values are stored
in a list and the maximum is easily found by value comparison. The sample point which
resulted in the maximum target value is then the input to the optima that has been
searched for and which can be used as next sample point in the Bayesian optimization.
Grid search ensures that the input space is equally explored, which means the hyper-
cubes missed by the search are equal in size everywhere in the input space. However
depending on the resolution, the number of points that are selected per dimension defines
how granular the grid is and therefore how big the chances are to miss the actual optima.
Since every additional dimension added to the system includes a similar amount of points,
the number of samples are combined and grow exponentially with the amount of added
dimensions. Hence this approach is only applicable in lower dimensions.

5.2.2 DIRECT

A popular global optimization algorithm proposed by Jones (2001a) is called DIRECT.
This optimizer handles internally the trade-off between exploration and exploitation and
allocates the effort accordingly to be able to find the optima globally. DIRECT eval-
uates in every iteration several search points based on a weighing between global and
local search criteria (Jones, 2001a). One main advantage besides being global is that

31



32 CHAPTER 5. ACQUISITION FUNCTIONS IN BAYESIAN OPTIMIZATION

DIRECT does not need any hyperparameters which need to be tuned. Where are ad-
vantages there are also disadvantages. In this case it is the curse of dimensionality which
DIRECT suffers. Jones (2001a) explains this by the several problems that the algorithm
tries to solve collectively, such as the support of continuous and integer variables or multi
modal functions (Jones, 2001a).

The algorithm works similarly to a Pattern Search algorithm. First the n-dimensional
search space is divides into multiple hyper-rectangles. This is also where the name
originates from, DIRECT stands for DIviding RECTangles. Referring to the two di-
mensional case for explanation, the search space is split in, for example, 3 different
rectangles. For each rectangle the center point is being sampled. Then, according to a
special rule which is explained later, some of these rectangles are selected and split into
smaller rectangles. From the new set of rectangles the new center points are sampled.
This process repeats itself until a maximum number of evaluations or a maximum num-
ber if iterations is reached. Worth mentioning is that in every step all the rectangles are
respected when deciding which one to select for further splitting, this means a rectangle
that was not selected in the first step can still be selected in any of the subsequent steps.

Figure 5.1: Illustration of the DIRECT algorithm. Illustration how the rectangles
are selected and divided. In each step fist for all rectangles the center point
is evaluated (if not already), these new evaluations are marked with a full
circle. Next some rectangles, marked by the gray area, are selected and then
divided into the new rectangles outlined by the dashed line.

The rule applied to select the rectangles first sorts all the rectangle by size. The size
is defined by the distance from the center point to any of the vertices. For each size
of rectangles the one with the largest function evaluation at it’s center is a possible
candidate. Actually selected rectangles lie on the convex hull when graphing the size
against the function evaluation. As this is a simplified explanation, please refer to the
original paper by Jones (2001a) for more details.

5.2.3 Mixed Integer Program (for NN)

Mixed integer programming is a super class of integer programming. These methods try
to optimize a certain objective, a function for example, by applying some constraints. In
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pure integer programming the variables which should be optimized are only allowed to
have integer values. In mixed integer programming also non integer values are possible.
The general concept of (mixed integer) programming is best explained visually. In the
example in Figure 5.2 the goal is to maximize the number of products of type A. Without
any constraints this would result in an infinite amount of items of type A, therefore it
needs meaningful constraints. In real life these constraints are often given by the setting
itself like by some relation between certain variables. An example from practice for such
a constraint are storage capabilities. For example a company can have only 8 storage
spaces and a product B uses two spaces whereas product A only one. Another constraint
could be that the company always can not have more than 2 items more of type A than
of type B. This setting coincides with the setting depicted in Figure 5.2.

Figure 5.2: Visual example of a MIP problem. Example for a integer programming
problem with solution a = 4, b = 2

For mixed integer programming there are advanced solvers available such as CPLEX
(IBM, 2021).

It might be still not clear how MIP can help finding the optima of the acquisition
function. As a reminder, the goal is to optimize a function which is represented as a
neural network. This means each input is mapped to an output by inputting it to the
network and running an forward pass. The result in the end is then the function value
which should be optimized.

Let’s first introduce the structure of a learned neural network, thus the network formu-
lation of a certain function, so that later the MIP can be applied to it. A neural network
consists of several layers of neurons (also known as nodes). The layers l0, ...lL are or-
dered sequentially where l0 is the input layer and lL is the output layer. All layers in
between are hidden layers. Each layer consists of d(l) nodes, which is the dimensionality

of the layer. These nodes are denoted as n
(l)
i where the superscript (l) indicates which

layer the node is in and the subscript (i) is the index of the node inside this layer. The
nodes of different layers are connected, in feed forward networks nodes of one layer are
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always connected only to nodes of the next layer. Nodes which are in the same layer
are never connected. In a fully connected network each node in one layer is connected
to each node in the next layer. These connections between nodes are called edges and

are weighted. For a connection of a node i in layer l, (n
(l)
i ) to a node j in layer l + 1,

(n
(l+1)
j ) the weight is denoted as w

(l)
ij . For a trained network these weights are fixed,

since the goal of the training process is exactly to determine the weights. These weights

can be interpreted as a indicator to how much influence does the output o
(l)
i of node

n
(l)
i has in the calculation that node n

(l+1)
j makes. Every node can be assigned a certain

node function that it applies to its inputs and which results in its output. Usually NNs
also have one additional node in each layer which has a constant output of 1, usually it

remains at index 0. Thus we can say o
(l)
0 = 1. This node is used to model the bias. In a

fully connected network this means that each node has a constant input of 1 weighted

with w
(l)
0j . For convenience the bias nodes are often omitted and the weight of its edges

is introduced into each node as a bias term b
(l)
i for node n

(l)
i . In a network with dropout

it is possible that certain nodes are not active. For node n
(l)
i we use y

(l)
i as the binary

variable to indicate if the node is active. Value of 1 means the node is active, value 0
means the node is inactive (dropped) (Cheng et al., 2017).

Figure 5.3: Illustration of a neural network node. Illustration of a NN-node of a
fully connected network (without dropout) showing the different inputs and
outputs with the proper notation used in the theoretical explanation of the
MIP problem for NNs.

Here is a list of all different component that are included in the structure of the neural
network and which are relevant for the mathematical notation of the MIP formulation.
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n
(l)
i : is the node at index i in layer l

o
(l)
i : is the output of node n

(l)
i

w
(l)
ij : is the weight between node n

(l)
i and n

(l+1)
j

b
(l)
i : is the bias in node n

(l)
i

y
(l)
i : indicates if node n

(l)
i is active or not.

For a more convenient mathematical notation these variables can be combined into vec-
tors and matrices which then can be used to formulate the relationships more concisely.
Additionally the output vector is separated into a positive component zk and negative
component sk which is used as a slack variable (Weissteiner and Seuken, 2020).

ok : are all the outputs of the nodes in the k-th layer listed in a vector.

zk : is the positive component of ok

sk : is the absolute value of the negative component of ok

W k : weight matrix of edges between the k-th and the (k-1)-th layer W k =

w
k
11 . . . wk1K
...

. . .
...

wkK1 . . . wkKK


bk : are all biases for the nodes in the k-th layer listed in a vector

yk : are all binary variables y
(k)
i for all nodes in the k-th layer listed as vector.

For the MIP formulation certain constraints are needed. Thus an assumption is made
which results in the big-M constraint (Grossmann, 2002). It is assumed that:

Assumption 1. Big-M Constraint For all K ∈ K there exist a large enough constant
M ∈ R+, such that |((W k)>ok + 1bk)j | ≤M for each entry j.

From this Big-M constraint we can construct the first constraints for the MIP:

zk − sk = (W (k−1))>o(k−1) + bk (5.6)

0 ≤ zk ≤ yk ·M (5.7)

0 ≤ sk ≤ (1− yk) ·M (5.8)

A detailed proof can be found in (Weissteiner and Seuken, 2020).

Using the Big-M constraints the whole MIP problem formulation can be written down
as:
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argmax{zK}
s.t.

zk=0 = x

zk − sk = (W (k−1))>o(k−1) + bk

0 ≤ zk ≤ yk ·M
0 ≤ sk ≤ (1− yk) ·M
yk ∈ {0, 1}dk

zK = (W (k−1))>z(K−1) + bK

 k ∈ 1, ...,K − 1

(5.9)

The last constraint which is specific for the last layer is different since for the output
the slack variable yK is always 1 as the output is never dropped. Thus following from
Equation 5.8 sK is strictly equal to 0. As a result the last equation can be written in a
simplified form.

Mixed Integer Program for NOMU architecture

The formulation of in Equation 5.9 however only supports the standard feed forward
structure with a sequence of fully connected layers. The NOMU model however does
not have such a simple structure, therefore the MIP formula has to be adjusted before
it can be applied to NOMU.
Luckily NOMU’s architecture has a lot of similarities to a normal feed forward network
and thus the formulation has to be adjusted only slightly. The NOMU model structure
consists of two different fully connected networks which share the same input and have
different outputs. So both network parts (main and side-net) can be considered sepa-
rately for most of the constrains used for the MIP. Consequently instead of variables z,
o , y and s there are now always two variables, one for the main-net and one for the
side-net. The network part which a variable belongs to is indicated with a subscript m
for the main-net and a subscript s for the side-net. As already stated, both network
parts share the same input, thus:

z0
m = z0

s (5.10)

The shared input however is not the only part where main and side-net are connected.
There are also connections from the last hidden layer of the main-net to the output layer
of the side-net. The weight for these connections are included in the weight matrix of
the last layer for the side-net only. This weight transformation has therefore no effect on
the main-net’s constraints, only for the last layer constraint of the side-net. To be able
to formulate the relation neatly the weight matrix W for the side-net can be spilt into
the part which relate to the weight of the output of the last hidden layer of the main-net
(W1s) and the side-net (W2s) respectively.

(WKs
s )> = [(W1

Ks
s )>, (W2

Ks
s )>] (5.11)
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The NOMU network architecture has two outputs, zKm
m and zKs

s , which should ideally
be used in the objective. For the application of BO the objective is to maximize the
acquisition function. To keep the notation simple and general acq(µ, σ) is used as a gen-
eral acquisition function which uses mean and uncertainty as inputs. The new objection
thus looks as follows:

argmax{acq(zKm
m , zKs

s )} (5.12)

With this the adaption of the constraint formulation for the MIP to the NOMU archi-
tecture is completed and looks like the following.

argmax{acq(zKm
m , zKs

s )}
s.t.

zk=0
m = zk=0

s = x

zkm
m − skm

m = (W
(km−1)
m )>o

(km−1)
m + bkm

m

zks
s − sks

s = (W
(ks−1)
s )>o

(ks−1)
s + bks

s

0 ≤ zkm
m ≤ ykm

m ·Mm

0 ≤ zks
s ≤ yks

s ·Ms

0 ≤ skm
m ≤ (1− ykm

m ) ·Mm

0 ≤ sks
s ≤ (1− yks

s ) ·Ms

ykmm ∈ {0, 1}dkm

ykss ∈ {0, 1}dks

zKm
m = (W

(Km)
m )>z

(Km−1)
m + bKm

m

(WKs
s )> = [(W1

Ks
s )>, (W2

Ks
s )>]

zKs
s = (W1

(Ks)
s )>z

(Km−1)
m + (W2

(Ks)
s )>z

(Ks−1)
s + bKs

s



km ∈ 1, ...,Km − 1
ks ∈ 1, ...,Ks − 1

(5.13)
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6

Experiments and Simulations

This chapter describes all of the experiments made for this thesis in a chronological order.
However, before listing the experiments the main metrics that are used to compare
the different estimators are explained followed by the discussion of some preparatory
work that has been done to get some pre-experimental insights. For each subsequent
experiments first the overall experimental setup is explained before highlighting the
exact configuration in more detail. Next the results of the experiment are presented and
discussed followed by the main findings that are summarized in the conclusions.

6.1 Metrics

6.1.1 Regret

The main metric that is used in this thesis to compare the different estimators is the so
called regret. The regret describes the error between the currently optimal value sam-
pled by the BO and the true optimal value. Therefore the regret as metric can only be
calculated when the true optima is known. Intuitively one can think of the regret as the
numerical value which can be improved to reach the true optima. As long as the true
optima is not reached one can not be fully satisfied. Formally the regret is defined as
follows:

Definition 3. Regret: If D is the set of samples and y∗ = f(x∗) is the true optima to
the target function f at input x∗, then

ŷ = max
x∈D

f(x)

is the optimal sample and the regret is

‖ŷ − y∗‖

When comparing methods a smaller regret is better than a large one since indicates that
the found optima is closer to the true optima.
In the context of the BO the regret can be calculated after every step since with every
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step a new sample is taken which might improve the value of the optimal sample ŷ.
Note that in the Definition 3 the regret is based on the optimal sample within the whole
sample set D, so including the starting samples. As a result it is not possible for the
regret value to increase after a new step since adding a new sample can only decrease
the value of the optimal sample1, ŷ. However it is possible that the regret value stays
the same over multiple steps, when the new samples do not result in a larger function
evaluation value. This often happens during the exploration phase of the BO algorithm.

Whenever only the regret after the last step is considered it will be referred to as fi-
nal regret.

6.1.2 Ranking

To quantify the difference between the estimator methods they are ranked according
to a scheme based on the final regret which incorporates not only the mean over all
runs but also the confidence interval. Primarily the upper confidence bound of the 95%
confidence interval is considered and the method which has the lowest is ranked at rank
one. However it is possible that another method is assigned the same rank when its lower
confidence bound is lower than the upper confidence bound of best one. All the other
ranks are derived by counting the number of upper confidence bounds that are below
the lower confidence bound of the method that should be ranked. As a consequence it
is possible to have for example two first ranks and a second one but also it is possible
to have two first ranks, no second one and a third one as depicted in Figure 6.1.

(a) Two first and one Second place (b) Two first and one Third place

Figure 6.1: Possible ranking orders. Illustration of the ranking order showing visually
how the methods are ranked. The dashed lines indicate upper and lower
confidence bounds. In (b) the most right method is ranked third since both
upper confidence bounds of the other methods are below the lower confidence
bounds of itself. In (a) the same method is ranked second since only one
upper bound of another method is below its own lower bound.

1This holds only when there is no data noise present. With data noise it is not guaranteed that
evaluating the function f at the same point multiple times always yields the same function value.
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6.2 Preparations and Exploration

Before starting with the experimental work, the four methods are tested in the context of
Bayesian optimization. This explorative work has its main goal to test the implementa-
tions of the different method and their integration into the BO algorithm. However the
data that results from these preparatory works can already be used to get some initial
understanding on how the different methods behave and special characteristics can be
identified.
To see the behaviour of the method for each step of the BO the predicted mean function
estimates and the uncertainty bounds are plotted together with the acquisition func-
tion, its maximum and therefore the suggested next sample point. As a reference the
true synthetic function is also plotted as well as the sample points used for the training
of the estimator in this step. To be able to compare the methods the same starting
configurations (same sets of initial samples) are used for all methods.

6.2.1 Insights

From this initial explorative work it becomes apparent that the different width methods
produce uncertainty bounds with different magnitude (see Figure 6.2). DeepEnsembles
for example, produces very slim uncertainty bounds meaning that the predicted σ itself
has a very small absolute value. It should be clear that depending on the acquisition
function the scale of the uncertainty has a large influence on the behaviour of the BO.
When taking the UpperBound acquisition function, the small absolute uncertainty values
will lead the BO algorithm to overvalue the mean prediction and always evaluate where
the mean prediction is highest. However, if the uncertainty is too large the BO will only
explore and will have no incentive to exploit promising regions. Thus finding a reason-
able choice of the scaling of the uncertainty is key to have a reasonable trade-off between
exploration and exploitation. Having such large differences in the uncertainty scale can
make comparing the methods challenging since it is difficult to identify if existing per-
formance differences are caused by the method itself or rather just by the uncertainty
scale.

Mean Width Scaling

As a result for the experimental work of this thesis the different methods are adjusted
so that they produce uncertainty predictions within the same scale. To achieve this an
additional factor c for the predicted uncertainty σpure is introduced which in this thesis
is referred to as scaling factor.

σ̃ = c · σpure (6.1)

Having this additional factor makes it possible to re-scale the uncertainty prediction of
the different methods, however, it is not clear which exact factors to use. As a result the

41



42 CHAPTER 6. EXPERIMENTS AND SIMULATIONS

(a) NOMU

(b) Gaussian process (GP)

(c) Deep Ensembles (DE)

(d) MC Dropout (DO)

Figure 6.2: Estimates in step 0 across the different methods on Forrester. Mean
and uncertainty estimates in the very first step of the BO for the instance
Nr. 8 and the Forrester function.each method has different estimates and
therefore proposes a different next sample (red triangle).
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c is internally calculated based on the mean width of the uncertainty bounds. This mean
width is simple to understand and it is calculated by taking samples of the uncertainty
predictions over the whole input space. Then for each sample the width between the
uncertainty bounds (2 · σ̂) is derived and the mean over all samples is taken. This
approach of using the mean width is based on the same approach that is used in (Heiss
et al., 2021). Also this mean width acts as good metric to intuitively see how the scales
of the raw uncertainty estimates compare.
For the experimental work of this thesis different mean width budgets are used which
are always applied to each of the methods. This ensures that intrinsic behaviour which
favour small uncertainties are still respected, thus when comparing the methods the
mean width that produced the best results is selected individually for every method.
The scaling factor c is calculated such that the following condition is fulfilled:

1

N

N∑
i=1

2 · c · σ̂(xi)
!

= budget (6.2)

Looking at the uncertainty predictions of the NOMU method in Figure 6.2a it stands
out that the uncertainty grows very quickly towards the boundaries of the input space.
This effect is not surprising when looking at the Equation 4.3. This effect, however,
is not favourable in the context of BO since it generates a high tendency to evaluate
the target function at the boundaries first, before exploring other regions. Why this is
problematic is described in Section 4.1.1. In the same section also the solution to this
problem, the additional activation is described which resulted from discussions with the
authors of (Heiss et al., 2021) about insights gotten from this explorative work.
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6.3 One Dimensional Synthetic Functions

With this first experiment the goal is to compare the different estimators, NOMU, Deep
Ensemble, MC Dropout and the Gaussian Process on a very simple setting. To be able to
calculate the regret as the metric (see Section 6.1.1) a setting with known true optima
is required. The setting chosen, is a set of three different one dimensional synthetic
functions which are regularly used as benchmarks (Eggensperger et al., 2013). The
functions that are used are the Forrester, Levy and the SinOne (Sinus-One).

(a) Forrester (b) Levy (c) SinOne

Figure 6.3: 1D synthetic benchmark functions. Set of one dimensional synthetic
benchmark function scaled to have input and output range of [−1, 1). All
function has been modified to result in a maximization problem and therefore
the true optima are marked as red triangles.

6.3.1 Experiment Setup

To be able to compare the results across the different synthetic functions, they are scaled
to have equal input and output range of [−1, 1]. Consequently the minimum and maxi-
mum of function values are at xmin = −1.0 and xmax = 1.0. This allows to compare the
regret value directly. By having functions with the same input space it is also reason-
able to apply the same mean width budgets to all different synthetic functions. For this
experiment mean width budgets of 0.1, 0.25, 0.5, 1.0 and 2.0 are tested.

Each BO instance is started with 8 samples which are drawn from an uniform dis-
tribution over the whole input space, so in the one dimensional case from [−1, 1). Then
the Bayesian optimization is run for 15 steps. After each step a new sample is added
with a function evaluation at the location proposed by the BO algorithm. Since the
configuration of the starting samples can matter for the performance of the Bayesian op-
timization, 30 instances with different starting samples are run so that conclusions can
be drawn from mean and median performance of this set of 30 instances. All methods
are run with the same collection of starting sample sets to ensure that for the presence
of particular challenging starting configuration all methods have the same challenge.
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Comparable Neural Network Complexities: For the NN-based estimators, namely
NOMU, Deep Ensemble and MC Dropout it is ensured that their architectures have com-
parable network complexities which is represented by the number of weights. This is
done because the predictive power strongly relates to the complexity of the model. The
baseline is set by the NOMU method which uses three hidden layers with 1024 nodes
each. The same structure of layers is used for both nets, the main and the side net. As
a result the MC Dropout method for which also three hidden layers are used but which
does not make use of a side net, more nodes are available per layer. Thus MC Dropout
uses 1024 nodes in the first and third and 2048 nodes in the second hidden layer. For
the Deep Ensemble method which uses a ensemble of 5 models, the number of nodes
available per model has to be reduced. Hence 256, 1024 and 512 nodes are being used
in the first, second an third layer respectively.

Additionally it is ensured that the regularization of the different methods is adjusted so
that they are equal. This is necessary due to different implementation of the loss. Also
for model architectures with dropout layers the dropped nodes do not contribute in the
sum of outputs, thus the remaining nodes have more weight to them. This has to be
considered in the regularization.

Noiseless Setting: Since this experiment is based on synthetic functions where the
exact function value can be evaluated there is no data noise present and the experiment
setup itself does not add artificial noise. By default most of the methods however are
configured for noisy data. Therefore the NN-based methods are adjusted to not consider
data noise.
For the Deep Ensemble method the adjustment is made according to Section 4.1.3 by us-
ing the Mean-Squared-Error (MSE) loss instead of the Negative Log-Likelyhood (NLL).
For the MC Dropout method no adjustments are made since due to the model sampling
method of the MC Dropout model no real separated notion of data and model uncer-
tainty can be identified.
The NOMU method the first sum (i) in equation 4.3 ensures that the model tries to
predict as close as possible to the sample points. By selecting the parameters for the
other two summands πsqr and πexp rather small, in particular smaller that 1 it can be
ensured that the first summand stays prominent in the loss and therefore only small
data uncertainty is allowed at the sample point itself.

Mean width calculation: To calculate the mean width, the uncertainty estimation
is sampled on a grid. All uncertainty samples are multiplied by a factor of 2 since the
goal is to get the mean width, they range between upper and lower uncertainty bound.
Finally the mean of all these samples is taken.
The mean width is only calculated in the very first step of the BO algorithm. From it
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the appropriate scaling factor c is derived and used in all subsequent steps. However,
for each of the different instances a different mean width is possible.

6.3.2 Detailed Configuration

NOMU: The NOMU network model has the same structure for the main and the
side net. Both of them have three hidden layers with 1024 nodes each. With this
configuration the model has 4 205 570 weights to learn when there is one input. For
all layers the ReLU activation is used in every node. For the additional activation a
maximum uncertainty value of 2 and a minimum of 10−6 are used.

MC Dropout: The MC Dropout model does only use a simple feed forward network
structure consisting of three hidden layers where the first and the last have 1024 nodes
and the middle layer has 2048. For the case with one input this results in 4 200 449
weights. The Dropout probability is set to 0.5.

Deep Ensembles: For the Deep Ensemble the three hidden layers are used with 256,
1024 and 512 nodes respectively. The ensemble contains 5 networks. With one input,
this results in 3 944 965 weight available for this DeepEnsemble estimator. ReLU is used
as the activation functions and the regularization that is used is the L2-regularization
with an value of 10−8. Since the experiment is based on synthetic function the adaption
for the noiseless case is applied (see section 4.1.3).

Gaussian Process: the Gaussian process is run with a RBF kernel with the default
parametrization2. The kernel parameters can be retrained and adjusted in every step of
the bayesian optimization.

Mean width calculation: The mean width is calculated on a grid with 2 000 grid
point in each of the dimensions.

6.3.3 Results

There are multiple different aspects that can be analyzed and be discussed therefore the
Results are sectioned into different parts, each focusing on one aspect.

Best Mean Width Budgets per Method Comparing the different mean width
budgets it is very apparent that for all neural network based methods the regrets for
different instances can vary a lot, hence the exact location of the starting samples can
influence the performance. This is indicated by the large confidence interval around the
regret mean as depicted in Figure 6.4 for the NOMU method and in Figure A.3 for all
the other methods. This constitutes a problem for the quantification of the comparison
since when the ranking rule described in Section 6.1.2 is applied, then all methods have

2For the implementation the RBF kernel from SKlearn was used with its default parameters
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rank 1 since all confidence intervals overlap. Table 6.1 lists all ranks based on the mean
and median and thus makes this effect very apparent.

Figure 6.4: Mean and median regret curve for NOMU on Forrester for different
budgets. For each of the mean width budgets in every step the mean regret
over all 30 instances is calculated which results in the solid lines. The dashed
lines show the median regret. For the mean of the regrets additionally the
95% confidence interval is depicted as the colored areas.

Looking at the individual mean width budgets for a specific functions and methods it
is noticeable that the smaller budgets (0.1, 0.25, 0.5) tend to produce large confidence
intervals more likely than the larger mean width budgets (1.0, 2.0). This can be observed
nicely in Figure 6.4 and Figure A.3d.

Estimator Performance Comparison: Since there are multiple mean width budgets
per method that are ranked first it is ambiguous which one to select for comparing the
different methods. Based on the ranking scheme for the following comparisons the mean
width budget which has the lowest upper confidence bound is considered as the ”best”
and used in Figures 6.5, A.6 and A.7. It is very apparent that the Gaussian process
performs significantly better than all the other methods, for all synthetic functions at
test. Overall the Forrester function has the largest differences in performance between
the different estimators.
For all methods it applies that the median (indicated with dashed lines) always lies below
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Mean Width Budget

0.1 0.25 0.5 1.0 2.0

f estimator µ M µ M µ M µ M µ M

F
or

re
st

er NOMU 1 2 1 1 1 2 1 2 1 5
GP 1 1 1 1 1 1 1 1 4 1
DE 1 1 1 2 2 3 1 4 3 5
DO 1 1 1 4 1 1 1 1 1 5

L
ev

y

NOMU 1 3 1 1 1 1 1 5 1 4
GP 1 1 1 1 1 1 1 1 1 5
DE 1 3 1 1 1 2 1 5 2 4
DO 1 1 1 2 1 2 1 4 1 5

S
in

O
n

e NOMU 1 4 1 1 1 1 1 3 1 5
GP 2 1 2 1 1 1 1 1 1 1
DE 1 4 1 2 1 1 1 5 1 3
DO 1 5 1 1 1 2 1 4 1 3

Table 6.1: Rank table for the different budgets per estimator in 1D. For each
estimator the final regrets for the different mean width budgets are ranked
according to the ranking scheme which results in the ranks listed in the column
µ. Using a normal ranking where lowest equals best also the medians are
ranked in the column with header M . The same table is repeated for all three
synthetic benchmark functions.
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Figure 6.5: Mean and Median regret curve for all estimators with their best
budget on Forrester. For each estimator the best mean width budget
is selected for the mean and the median the respective regret curves are
displayed. For the mean the budgets are selected by lowest upper confidence
bound of the final regrets. The selected budgets are indicated in the legend
after the method identifiers by the numbers in the bracket where the first
one displays the best budget for the mean and the second one the best for
the median.
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the mean suggesting that way more than half of the instances perform better than the
mean. The fact that the median lies even outside of the 95% confidence interval indicates
that there are only very few outlier instances which drag the mean upwards to a bigger,
thus worse regret. One outlier run with a large regret value has a large influence on the
mean because all the other regrets are really small. Additionally, since the graphs are
logarithmic scaled on the y-axis this effect is visually magnified.
Another observation that can be made is that the performance of the methods depends
on the function that it tries to optimize. All of the different functions do have local
optima however their structure still differs a lot. The Forrester for example has only
one local optima which is much smaller than the global one. Also there are a lot of points
around the global optima that are bigger than the local optima thus it is expected to
be relatively easy for the methods to reach the global optima. The SinOne function
however has many local optima which are peak-like. Also the SinOne function varies a
lot in y when moving on x. Due to this large variability and the multiple local optima
it is expected to be harder to find the global optima. The Levy function has also an
interesting property that despite some variation in y and local optima it has overall
parabola shape for which the optima coincides with the global optima. As a result it is
possible to find the global optima even when the local oscillations are ignored and only
the overall tendency of the curve is considered.

Bayesian Optimization Step Inspection: The regret curves already indicated that
there are some instances which performed significantly worse than the rest. To further
pin down which of the 30 instances performed bad and whether they are true outliers or
whether the distribution just is skewed, the regrets after the last step are combined into
a box plot. For each budget the mean and the 95% confidence interval is shown including
the outliers. Additionally the outliers are numbered with the ID of the instance to be
able to identify them. Figure 6.6 shows this box plot for NOMU on the Forrester
function. It stands out that there is one clear outlier (Nr. 24) for the three small mean
with budgets. Also the are some other outlier instances which however differ depending
on the budget. Knowing which instances result in extremely bad regrets these instances
can be inspected in more detail. Comparing the box plot with the regret curves it
becomes clear that the outliers indicted in the box plot are the main cause for the large
confidence interval for the regret mean as the interquartile range is much smaller.

When inspecting this instance with Nr. 24 for the NOMU method, the effect of the
additional activation function becomes apparent now. In Figure 6.7 the red dashed line
shows that the uncertainty estimate grows really quickly since there are no samples with
x value higher than 0.25. However, because of the activation, the uncertainty estimation
asymptotically approaches a maximum value of 2 as set in the configuration. As a result
the acquisition function does not explode and is still in a reasonable range. Nevertheless
the next sample that is proposed is the border point on the right. When looking at all
the steps of the instances (see Figure A.21) it stands out that this specific configuration
of starting samples almost lie on a straight line which makes the estimator believe that
the function is almost constant. As a result the BO never explores the region around the
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Figure 6.6: Final regret distribution over the different instances, NOMU, For-
rester. For each mean width budget the distribution of the final regrets
is displayed as a box plot where the box represents the interquartile range.
The solid black line represents the median and the black dots show the out-
liers. For the outliers the instance number is listed top left ordered by size
beginning with the largest regret.

Figure 6.7: First step NOMU on Forrester showing the NOMU-activation ef-
fect. Estimations during the first step of NOMU on the Forrester function
for instance Nr 24. with mean width budget 0.5. The red dashed line dis-
plays the uncertainty estimation after the activation was applied but before
the uncertainty is scaled by the scaling factor c. The green dashed line shows
the uncertainty estimate after the scaling with c.
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true optima. This is also because the uncertainty is scaled down due to the mean width
budget because in the first step the uncertainty at the right was quite big. However
one could imagine that scaling up the uncertainty by weighing it more in the acquisition
function or by scaling up the scaling factor c, eventually the optima of the acquisition
function would lie in the desired region and the BO would evaluate the function there
and then would be able to make more progress.

Another interesting observation can be made for the MC Dropout method. In addition
to not exactly fitting through the samples, the uncertainty bounds lie like a tube around
the mean prediction. Despite this rather naive behaviour the MC Dropout manages to
produce quite good results. Especially for the Levy function the tube-like character is
not hurting too much because the overall structure of the Levy is like a parabola with
some smaller oscillations. Since the optima of the underling parabola and the Levy
function coincide the optima can still be found and also the uncertainty tube captures
most of the oscillation. Even for the SinOne function which has much larger oscillations
the tube character of the uncertainty bound does not hurt the method too much.

Scaling Factor: As already mentioned in section 6.2 the Deep Ensemble estimator
produces much smaller pure uncertainty estimates than the others. By pure uncertainty
the prediction is meant before it is scaled by the scaling factor c which is derived from
the mean width budget. To investigate the difference in scale of the pure uncertainty
estimates in more detail Table A.1 lists all values for the scaling factor c for all methods-
budget-function combinations. Comparing the scaling factor c for the different methods
with a fixed budget directly reflects the magnitude of the pure uncertainty. The larger
the scaling factor c the smaller was the original mean width. It stands out that the Deep
Ensemble estimates uncertainties of a factor 100 to 1000 times smaller than the other
estimators. It is also noticeable that the NOMU method irrespective of the function
form, always produces uncertainty bounds with similar mean widths. For the Gaussian
process however the scaling factor c varies a lot depending on the underlying function.
For the relatively smooth Forrester function the uncertainty is rather small, smaller
than for NOMU. For the SinOne function which changes with high frequency the pure
uncertainty is much larger (indicated by a much smaller scaling factor c).

6.3.4 Conclusions

The first experiment has shown that in the low dimensional case the Gaussian process
achieves best results after the last step as well as in early stages of the BO and is
unbeaten by the NN-based methods.
For all NN-based methods it holds that the performance in terms of final regret, differs
a lot depending on the mean width budget and the exact configuration of the starting
samples. The later can also cause the algorithm to get stuck in local minima if the
uncertainty is not weighted enough.
For the MC Dropout the observation was made that it does not fit the data points
exactly despite the noiseless setting, nevertheless the BO still manages find the optima.
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Mean Width Budget

f estimator 0.1 0.25 0.5 1.0 2.0

F
or

re
st

er NOMU 1.63× 10−2 3 1.54× 10−2 3 1.54× 10−2 3 5.61× 10−5 1 3.90× 10−4 2
GP 8.25× 10−7 1 8.25× 10−7 1 8.25× 10−7 1 1.02× 10−6 2 2.85× 10−6 3
DE 1.54× 10−2 4 3.62× 10−5 1 3.79× 10−4 2 1.56× 10−3 3 1.72× 10−3 3
DO 5.06× 10−2 1 4.76× 10−2 1 3.17× 10−2 1 4.71× 10−2 1 3.11× 10−2 1

L
ev

y

NOMU 6.51× 10−3 2 6.79× 10−3 2 4.76× 10−3 2 9.25× 10−4 1 7.99× 10−4 1
GP 8.36× 10−3 4 5.30× 10−6 1 7.01× 10−5 2 8.28× 10−4 3 1.33× 10−3 3
DE 9.62× 10−3 2 8.00× 10−3 2 3.56× 10−3 1 1.07× 10−2 2 2.63× 10−2 3
DO 4.31× 10−3 1 4.36× 10−3 1 4.37× 10−3 1 4.84× 10−3 1 8.55× 10−3 1

S
in

O
n

e NOMU 7.32× 10−2 1 6.95× 10−2 1 6.43× 10−2 1 6.72× 10−2 1 5.72× 10−2 1
GP 5.40× 10−2 3 5.40× 10−2 3 4.21× 10−2 2 2.28× 10−2 2 7.27× 10−3 1
DE 6.88× 10−2 1 6.15× 10−2 1 7.48× 10−2 1 5.71× 10−2 1 4.99× 10−2 1
DO 8.08× 10−2 1 7.56× 10−2 1 8.05× 10−2 1 6.73× 10−2 1 8.10× 10−2 1

Table 6.2: Full table of regret values. This table lists all final mean regret value
for all mean width budgets and all estimators. Next to the mean regret also
the rank (according to the ranking scheme) is displayed and all first ranked
budgets per method-function combination are highlighted in bold font.

Mean Width Budget

f estimator 0.1 0.25 0.5 1.0 2.0

F
or

re
st

er NOMU 0.62 [±0.16] 1.32 [±0.3] 2.74 [±0.69] 6.85 [±1.76] 10.98 [±2.6]
GP 0.7 [±0.13] 1.6 [±0.35] 3.2 [±0.67] 6.61 [±1.4] 12.59 [±2.75]
DE 731 [±350] 1255 [±489] 3773 [±2231] 8421 [±5738] 15501 [±8454]
DO 0.95 [±0.09] 2.34 [±0.19] 4.67 [±0.39] 9.45 [±0.84] 18.91 [±1.5]

L
ev

y

NOMU 0.6 [±0.18] 1.3 [±0.35] 2.5 [±0.65] 4.87 [±1.27] 9.46 [±2.26]
GP 0.3 [±0.22] 0.84 [±0.57] 1.38 [±1.11] 3.36 [±2.28] 4.13 [±1.58]
DE 215 [±95.34] 1003 [±1128] 1173 [±823] 2409 [±1932] 3371 [±1902]
DO 0.8 [±0.07] 1.94 [±0.16] 3.96 [±0.33] 7.9 [±0.65] 15.81 [±1.36]

S
in

O
n

e NOMU 0.5 [±0.13] 1.71 [±0.57] 3.41 [±1.0] 7.14 [±2.6] 13.11 [±4.35]
GP 0.09 [±0.01] 0.23 [±0.02] 0.46 [±0.05] 0.88 [±0.09] 1.71 [±0.19]
DE 40.79 [±15.92] 91.46 [±29.55] 230 [±112] 353 [±120] 792 [±329]
DO 0.52 [±0.06] 1.31 [±0.17] 2.66 [±0.31] 5.28 [±0.63] 10.68 [±1.42]

Table 6.3: C values per method and mean width budget. This table shows the
mean scaling factor c derived from the estimated uncertainty and the give
mean width budget per estimator method. These c-values have then been
used throughout the whole process to scale the uncertainty. The first value
describes the mean c-value over the 30 instances and in the brackets the 95%
CI is indicated.

53



54 CHAPTER 6. EXPERIMENTS AND SIMULATIONS

(a) MC Dropout performing on Levy

(b) MC Dropout performing on SinOne

Figure 6.8: MC dropout estimates during last step on Levy and SinOne. Mean
and uncertainty estimations during the last step of the BO algorithm using
the MC Dropout method for instance 18 (Levy) and 6 (SinOne), both with
mean width budget of 0.5. Black dots and black vertical lines indicate the
samples that were taken during the process showing that for both synthetic
function the BO algorithm evaluates the function close to the true optima.

Another observation which is worth to keep in mind is that the uncertainty bounds for
the MC Dropout lie tube-like around the mean prediction.
For the Deep Ensemble methods it was quantified that the uncertainty estimates are
much smaller in magnitude compared to the other method.
Due to the large variance of the different instances it is difficult to quantify the difference
between the methods. Consequently for subsequent experiments a measure has to be
implemented which allows for more robust results.
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6.4 One Dimensional Dynamic C Strategies

As seen from the results shown in Section 6.3 it is common that there are starting
configurations which lead the BO to get stuck in certain regions, not being able to reach
smaller regret values in later steps of the process. The consequences are quite large
performance differences over different instances. This makes it challenging to make clear
statements about the quantitative performance of the different methods.
The goal of the following experiment sequence is to asses different variations of methods
for preventing instances to get stuck in a local optima so that the variance observed in
the experiment in Section 6.3 becomes smaller allowing for a more robust quantification.
In the detailed inspections of the instances in the previous experiment it was discovered
that some starting configuration lead to very large uncertainty bounds at the very start
of the BO run. Since the mean width calculation is only performed in the first step this
leads to a scaling factor c that shrinks the uncertainty in every of the subsequent steps.
Assuming that the mean prediction is rather robust throughout the process it makes
sense to weight the uncertainty more to be able to escape a local optima and encourage
more exploration. As a result an adjustment is made to the algorithm so that the scaling
factor c can be doubled whenever it is noticed that the algorithm is stuck otherwise. The
condition when the algorithm is considered to be stuck is when the algorithm proposes
a point to sample which (in terms of the input) is close to an already samples point.
Since in the later steps of the Bayesian optimization exploitation is favoured and thus
should be allowed so that the process can converge in the promising region.
As a result, ε is defined as how close the proposed sample can be to already existing
samples without triggering a doubling of the scaling factor c. To allow exploitation this ε
has a decay strategy over time, similar to the trade-off parameter ξ for the Probability
of Improvement acquisition function explained in Section 5.1.2.

In the following experiment two different strategies for the ε-decay are compared. The
first approach is linearly decrease the ε with increasing amount of steps from an given
initial ε0 to a given final εn. For step i the εi is defined as follows.

Linear dynamic C:

εi = ε0 + i ·
(
εn − ε0

n

)
(6.3)

where:

ε0 =
linterval · h

s0

n is the number of steps for the Bayesian optimization

s0 is the number of starting samples

linterval is the input range per dimension

h is a parameter defining the initial ε in relation to the input range
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Note that the final εn should be defined smaller than ε0. When Grid Search is used
as the acquisition function optimizer then it makes sense to choose εn to be equal to the
grid-distance. This linear approach has as consequence a rather slow decrease in the ε,
meaning that the BO algorithm is strongly forced to explore regions. Only at the very
end it is allows to exploit already explored regions. Like this the chance of finding the
correct region for the optima are high but it might happen that at the end there are no
steps left for the algorithm to exploit this region. This means there might still be some
improvement to be made. To counter this issue another strategy is experimented which
allows a faster decrease in the ε. With an exponential decrease only the very first steps
are forced to explore but rather quickly exploitation is allowed. Note that exploration
is always possible, if the acquisition function suggests it.

Exponential dynamic C:

εi = ε0 ·
(
εn
ε0

)i/n
(6.4)

Dynamic C Padding: Another aspect that is taken into account with the Dynamic
C adjustment is whether only in the last step it should be allowed to exploit with a
minimal εn or whether the linear and exponential interpolation should finish before the
last step so that for the last p steps it is possible to exploit with minimal ε. This number
of last steps that are all using the same minimal εn is called padding in this work.
With padding the linear and exponential Dynamic C formulation are adjusted the
following way:

Linear dynamic C with padding:

εi = ε0 + i ·
(
εn − ε0

n− p

)
(6.5)

where:

ε0 =
linterval · h

s0

p is the padding

Exponential dynamic C with padding:

εi = ε0 ·
(
εn
ε0

)i/(n−p)
(6.6)

Whenever the scaling factor c is doubled the acquisition function changes and thus has
to be optimized again. However in terms of computational effort the optimization on
the acquisition is usually considered rather irrelevant in comparison to target function
evaluations. The newly found optima to the acquisition function is then the new pro-
posed sample. If this is still too close to existing samples, then the c is doubled again.
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The scaling factor c can be doubled until an appropriate sample is found or until a limit
of doubling steps is reached.

As mentioned the scaling factor c is only calculated once during the very first step
and hence it would also be possible to adjust the algorithm so that in each set a fresh
scaling factor is calculated. This approach however is not examined in this thesis because
the scaling factor, how it is interpreted in this work, should be a constant factor specific
to the estimator and its characteristic and not to the instance itself. Ideally the scaling
factor would be a hyperparameter with a fixed value, before running the algorithm.

6.4.1 Experiment Setup

After inspecting the first results of the linear interpolation experiment it was noticed
that towards the end of the process most of the methods were able to achieve quite
some improvements compared to the previous steps. As a result the padding mechanism
as previously described was established. Intermediate experiments with different values
between one and five for the padding showed that a padding value of 4 produced the
best results for the Forrester function as a result for the Dynamic C strategies in the
following experiment sequence will all work with the smallest εn in the steps 11 to 15.
Also included in the analysis are the results of the previous experiment without dynamic
C to identify the effect of this adjustment.

Overall the experimental setup is kept from the first experiment and applied to all
the three different Dynamic C approaches, the linear decay without padding and the
linear and exponential decay with padding.
Since the Dynamic C strategies can be viewed as the implementation of a different
acquisition function with weighted uncertainty the same experimental setup is repeated
with the Expected Improvement (Section 5.1.3) instead of the Upper Bound ac-
quisition function.

6.4.2 Detailed Configuration

As mentioned in the main configuration of the experiment, especially regarding the
configuration of the estimator methods are the same as in the previous experiment
(Section 6.3).

Dynamic C For the experiment variations which use the Dynamic C the parameter
linterval from Equation 6.3 and 6.4 is 2 since the input space for the function is scaled to
[−1, 1). The fraction parameter h is set to 0.25 so that even for equidistant distributed
starting samples there is still room to find possible locations for a new sample that is
not inside any of the ε-region to the other samples. As in the previous experiment 8
starting samples are used for each run, so s0 = 8. For the optimization of the acquisition
function still the Grid Search is used with 2000 intervals per dimension which result
in a interval width of 0.001 which is also set as the value for εn.
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6.4.3 Results

In Figure 6.9 it is noticeable that the progress of the Gaussian process is hindered when
the dynamic C is applied. This can be explained by the fact that when dynamic C is
utilized (especially with the linear variant without padding shown in Figure A.12b), the
early steps of the BO is forced to sample points that are not close to previous samples.
In the case that the algorithm finds the region of the true optima quickly, however it
is not allowed exploit this region when using the dynamic C adjustment. Therefore the
process if forced to explore and sample points which have a larger regret. Like this the
regret cannot be improved until the process is allowed to exploit due to a smaller ε.
It is noticeable that for the linear decay the padding improves the performance when
considering the final regret in contrast to the case without padding. This effect makes
sense since due to the padding the ε shrinks faster and reaches its minimum earlier and
the BO has several steps available at the end to freely exploit the region around the
assumed optima.

(a) without dynamic C (b) exponential dynamic C (without padding)

(c) exponential dynamic C (with padding) (d) exponential dynamic C (with padding)

Figure 6.9: Forrester - all methods with best budget, different Dynamic C
approaches. Each graph displays one regret curve per method. For each
methods the budget which produces the smallest final regrets are selected,
individually for mean and median.
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Not only the linear but the exponential decay forces some more exploration than needed
for the Gaussian process, however since the ε decays faster than in the linear case the
scaling factor c is doubled less often (see Figure A.15) and the BO can start to exploit
earlier. The final regret of the Gaussian process without dynamic C is never reached by
any dynamic C adjustment. For the NOMU method however the exponential dynamic
C was able to reduce the final regret mean from 5.61×10−5 to 6.24×10−6 in the case of
the Forrester function (see Table 6.4). The median of the final regret stays the same
however in the dynamic C case the median reaches its minimal regret only at the very
last step whereas in the case without the dynamic C it reaches it faster. For small mean
width budget the effect of the dynamic c is clearly visible. There are no longer instances
that getting stuck at larger regrets like 10−2 for Forrester. With dynamic C after the
last step the regret is smaller than 10−3 for all budgets. This reduction of outliers can
also be observed when comparing the distribution of final regrets like in Figure 6.10. In
this figure it can also be observed that overall the are much less outlier runs and the few
remaining outliers are not as drastic anymore.

Mean Width Budget

variant 0.1 0.25 0.5 1.0 2.0

no dc 1.63× 10−2 1 1.54× 10−2 1 1.54× 10−2 1 5.61× 10−5 1 3.90× 10−4 1

lin 2.14× 10−4 1 1.51× 10−4 1 1.46× 10−4 1 2.55× 10−4 1 3.11× 10−4 1

lin pad 1.62× 10−5 1 4.58× 10−5 1 5.60× 10−5 1 1.41× 10−4 2 4.14× 10−4 4

exp pad 6.24× 10−6 1 1.07× 10−5 1 2.16× 10−5 1 5.60× 10−5 2 1.35× 10−4 4

Table 6.4: Final regrets for NOMU on Forrester for the different Dynamic C
strategies. This table lists the final regret means for the NOMU method
for the different variants where ”no dc” means that there in no Dynamic C
however mean width scaling is still present. ”lin.” means that the ε decay
linearly. ”lin. pad.” additionally has padding added to the strategy. The
same goes for ”exp. pad.” where however the ε decays exponentially.

When looking at the distribution of the final regrets for each of the different variations,
then one can see that compared to the version without dynamic C the ones which
makes use of the dynamic C manage to prevent outliers which produce a really large
regret. Figure 6.10a shows that without dynamic C the instance with ”Nr. 24” produces
really large regrets for the small mean width budgets. However in the cases where the
dynamic C was applied there are no such large outliers. For the exponential dynamic
C in Figure 6.10b, the instance ”Nr. 24” is no longer an outlier at all. It is noticeable
that for the Forrester the exponential dynamic C was able to shrink the interquartile
range and also to lower the median for the mean width budget of 0.1 in addition to
getting ride of the outliers which indicates that the instances got more robust.

In Figure A.21 in the Appendix the full run Nr. 24 without any Dynamic C is depicted.
It is noticeable that the algorithm gets stuck in a local optima to the right. Figure 6.11
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(a) without dynamic C (b) exponential dynamic C (with padding)

Figure 6.10: Final regret distribution with and without Dynamic C for NOMU
on Forrester. For each mean width budget the distribution of the final
regrets is displayed as a box plot where the box represents the interquartile
range. The solid black line represents the median and the black dots show
the outliers. For the outliers the instance number is listed top left ordered
by size beginning with the largest regret. The figure shows the result for
when no Dynamic C is applied (same results as in Section 6.3). Figure (b)
shows the result when Dynamic C is applied with exponential decaying ε
and a padding of 4 steps.

represents the situation after the first step for each of the different experiment varia-
tions. Comparing them it becomes apparent that each variant proposes quite a different
next sample indicated by the x-position of the red triangle. Without the dynamic C
(Figure A.15a) the next sample is on the left side and all following samples will also be
there. The other variants all propose a next sample further to the right closer to the true
optima. The reason for this is that the dynamic C variations all scale up the uncertainty
more than without the dynamic C . In that case the large uncertainty on the right gains
enough strength to draw the attention towards this previously unexplored region. How-
ever, it is also important to mention that since neural network are learned during the
process it is possible that different runs for the same set of starting points can lead to
different mean and uncertainty predictions, which might also cause larger uncertainties
due to a different mean width scaling, irrespective of the dynamic C approach.

Whenever the dynamic c is used, either with linear or dynamic decay, then then smaller
mean width budget tend to produce better results (Figure 6.9, A.13 and A.14). However
when looking at the ranking many mean width budgets and dynamic C variants are
jointly on rank one and thus no significant difference is quantified. Table 6.5 shows that
for the Gaussian process without dynamic C always results in a better or equal rank for
the Forrester function. However when applied to the SinOne function (Table A.3)
then dynamic C performs better. Over all methods either the exponential decay version
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(a) without dynamic C

(b) linear dynamic C (without padding)

(c) linear dynamic C (with padding)

(d) exponential dynamic C (with padding)

Figure 6.11: Differences of estimations for NOMU depending on Dynamic C
variant. Estimation results during the second step of the BO algorithm
for the different variations of the Dynamic C for NOMU on Forrester.
The scaling factor c is shown in the legend as cdc.
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of the dynamic C or no dynamic C rank first. However once again it is worth mentioning
that one main reason why the version without dynamic C achieves good ranking is
because the confidence intervall is rather large and thus chances of overlapping are also
large. It is still less robust than without the dynamic C.
For completeness reasons it has to be mentioned that when comparing the Upper
Bound acquisition function and the Expected Improvement on the same experi-
mental setup for all dynamic C variations no real differences were identified, indicating
that on the tested synthetic function the both acquisition function perform equally good
(Table A.4).

6.4.4 Conclusions

Using the dynamic C method it is possible to use smaller mean width budgets with-
out risking that the algorithm gets stuck in a local optima. Thus using the dynamic
C adjustment produced more robust results. Another finding is also that using a ε in
the dynamic C approach which only decays linearly slows down the progress drastically,
therefore if using the dynamic C scaling using an exponential decay is highly recom-
mended. Also it is recommended to use some padding for the decay rule so that there
are multiple steps at the end of the process that can be exploited. Using small mean
width budget yield as good or better results than large ones and since the Dynamic C
mechanism is allowed to increase the value of the scaling factor c it is more robust to
use them.
However it has to be said that in a simple setting like the one dimensional Forrester, the
Gaussian process performs well without the dynamic C scaling and thus should not be
tampered. The dynamic C adaption is mainly applicable for neural network approaches
such as NOMU. However, even for them it does not decrease the regret by much as it
mainly prevents outlier runs and thus produces more robust results.

Since no real difference between the Upper bound and the Expected Improvement acqui-
sition function was determined, the UpperBound acquisition function will be further
used for the remaining experiments.
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Mean Width Budget

0.1 0.25 0.5 1.0 2.0

f variant µ M µ M µ M µ M µ M

F
or

re
st

er

N
O

M
U

no dc 1 3 1 1 1 3 2 3 4 13

lin. 9 14 6 14 7 16 9 18 9 18

lin. pad. 1 3 2 3 3 3 4 12 12 20

exp. pad. 1 1 1 3 1 3 2 11 5 16

G
P

no dc 1 1 1 1 1 1 1 1 4 1

lin. no pad. 13 13 13 17 13 17 16 19 16 20

lin. pad. 4 1 5 1 4 1 10 13 13 13

exp. pad. 4 1 1 1 5 1 5 1 10 13

D
E

no dc 1 1 1 3 3 7 1 12 11 20

lin. no pad. 3 9 4 12 4 16 1 15 10 17

lin. pad. 1 6 1 8 4 11 4 12 10 19

exp. pad. 1 2 1 3 1 3 4 9 6 18

D
O

no dc 1 1 1 4 1 1 1 1 1 11

lin. no pad. 1 8 1 11 1 15 1 17 1 20

lin. pad. 1 9 1 16 1 11 1 19 1 18

exp. pad. 1 6 1 7 1 5 1 10 1 11

Table 6.5: Rank table for the different budgets per estimator and Dynamic C
variant. For each estimator and each Dynamic C variant the final regrets for
the different mean width budgets are ranked according to the ranking scheme
which results in the ranks indicated in the column µ. Using a normal ranking
where lowest equals best also the medians are ranked in the column with
header M . The whole table presents results for the Forrester function.
”no dc” means that there in no Dynamic C however mean width scaling is
still present. ”lin.” means that the ε decay linearly. ”lin. pad.” additionally
has padding added to the strategy. The same goes for ”exp. pad.” where
however the ε decays exponentially.
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6.5 Two Dimensional Synthetic Functions

In the following experiment the behaviour of the different estimator methods in BO are
tested when there is no longer just one input dimension but two. Due to the additional
dimension there is much more space for exploration and the chances that the starting
samples already reveal a lot of information about the target function is much smaller.
In previous experiments it was discovered that some methods, for example the NOMU,
sometimes have large uncertainty at the boundary which then are carried over into
the acquisition function which makes the BO to mainly explore the boundaries of the
input space. As a consequence the additional activation function was implemented into
the NOMU method (see Section 4.1.1). In the one dimensional case there are only
two boundary points but in the two dimensional case there already infinitely many3.
Therefore the two dimensional setting is particularly interesting for inspecting the effect
of the activation of the NOMU model but also to see how all the methods cope with two
inputs.

6.5.1 Experiment Setup

In the experiment described in Section 6.4 the observation was made that the Gaus-
sian Process performs well in low dimension such that the dynamic C scaling hinders
its progress to a large extent. As a consequence for the following experiments there are
always two versions of the Gaussian process used as benchmarks. First the default Gaus-
sian Process scaled using the mean width scaling and affected by the dynamic c scaling.
Second a pure version of the Gaussian process also based on the default configuration,
however not scaled and therefore also not affected by the dynamic C scaling.

Like for the previous experiments synthetic functions are used so that there are ana-
lytical solution available for the function evaluations an therefore the exact regret can
be calculated. Like for the one dimensional setting the functions that are used in the ex-
periments are widely used in two dimensional benchmark functions. The set contains the
Branin (Figure 6.12a) function which is the most used one for benchmarking optimiza-
tion tasks, despite the fact that it has three optima. The other functions that are used
are the Rosenbrock (Figure 6.12b), Camelback (Figure 6.12c), Perm (Figure 6.12d)
and the Goldstein Price (Figure 6.12e) functions.

Most of the experiment setup is kept as it was in the one dimensional case. However
due to the large increase of area that can be explored the number of steps that the BO
can take is increased to 64. This amount of steps is large enough that the algorithm
has more time to explore the true shape of the function before it starts exploiting the
promising areas but the number is also small enough to not increase the run time too
drastically. The algorithms need more time for exploration since the number of initial
samples are kept at 8. It is interesting to see which method can cope with such sparse
training info and can already in early stages produce good proposals for next samples.

3When the acquisition function optimizer is not constrained by a grid resolution.
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(a) Branin (b) Rosenbrock (c) Camelback

(d) Perm (e) Goldstein Price

Figure 6.12: 2D synthetic benchmark functions. Set of two dimensional synthetic
benchmark functions scaled to have input and output range of [−1, 1)2.
All functions have been modified to result in a maximization problem and
therefore the true optima are marked as red triangles.

With this methodology it is quite important for the methods to sample points which
reveal much information so that the quality of the mean prediction can improve early
on.

The conclusion that small mean width budget work best for almost every method and
function combination from the previous experiment is used and thus there is no longer
the need to test multiple budgets. Since the dynamic C mechanism is able to scale up
the scaling factor c anyways an even smaller mean width budgets of 0.05 is used. Like
this it can also be checked whether even smaller mean width budgets are worth it. If the
results show that the dynamic C always scales up the scaling factor c at least once then
the conclusion can be made that a mean width budget of 0.1 4 would have produced the
same results.

4A mean width budget of 0.1 is equivalent to the budget of 0.05 and doubling the resulting c-factor
once.
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6.5.2 Detailed Configuration

The configuration of the different network models is kept the same in terms of archi-
tecture, training epochs and regularization as in the previous experiments. All network
models have to be adjusted to have two inputs in the input layer. The only other changes
are made to the MC Dropout method. To use closer configuration to the original pa-
per the dropout probability is lowered from 0.5 to 0.2. Also since for the MC Dropout
method the evaluation of any points takes particularly long since it has to be repeated
many times the number of network samples is reduced from 500 to 10. This aspect is
relevant in the context of acquisition function optimization since there are a lot model
evaluations made. For this two dimensional experiment still the Grid Search algorithm
is used since it is still feasible, however the number of grid intervals per dimensions is
reduced to 200, so that there are 40 000 grid points in total. Consequently the εn is
increased from 0.001 to 0.01. To also increase the robustness of the means over the
different instances the total number of instances is increased slightly up to 40.

6.5.3 Results

By looking at the regret plots (Figure 6.14) the first thing that stands out is that for four
out of the five functions the Gaussian process which is not affected by the dynamic C
performs worse than when the dynamic C and the mean width based scaling is applied.
This is surprising since in the one dimensional experiments it was clearly visible that
the dynamic C scaling slowed down the progress. This observation therefore has two
logical explanations. First it is possible that the mean width based scaling itself does
most of the improvements and then adding the dynamic C counteracts again. The other
explanation is that increasing the dimensionality the setting got changed so much that
the dynamic C scaling becomes an improvement. To further inspect graph which depicts
how often the dynamic C was applied. However for all the functions for all the functions
being tested, the scaling factor c was often doubled for the Gaussian process making
it not possible to separate the effect of mean width scaling and dynamic C doubling
(Figure 6.13).

Now focusing more on the NN-based methods it is apparent that for every function
the situation differs, there is no method that clearly separates itself from the others
throughout the whole experiment. However, when ranking the methods according to
their final mean regret and the ranking rule, then the NOMU is always ranked first or
second as seen in Table 6.6. The same Table also shows that the MC dropout method
is always the worst neural network based method, only exception is the Camelback
function where the Deep Ensemble performs the worst. For the Goldstein Price
function the NOMU method manages to separate itself greatly from the other methods
in terms of the median. When inspecting individual instances it can be observed that the
NOMU method often explores the region around the optima to a larger extend whereas
the other methods often exploit one particular point. In the case of the Goldstein Price,
its flat structure often concentrates on a single point which may not exactly represent
the global optima.
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Figure 6.13: Number of time Dynamic C is active. This graph displays how often
the scaling factor c was doubled due to the dynamic C adjustment. The
solid line represents the mean over all the 40 instances and the colored area
displays the 95% confidence interval.

Further inspecting the instances where the BO samples the target function throughout
the process it is noticeable that for the pure Gaussian process it can happen that it gets
stuck in some local minimal. This was already indicated by the large variance of the
runs. In the specific case of the Branin function it is very apparent that throughout the
process almost exclusively boundary points were sampled by the pure Gaussian process
(Figure 6.15e). Also a lot of points were samples very close together. The Gaussian
process with dynamic C however behaves differently. It explores much more inside the
input space and consequently finds a global optima for the same configuration of starting
samples. When comparing the NN-based methods an interesting observation is that the
MC Dropout method, as the only method, only finds one of the global optima and then
only exploits this region. NOMU samples at two of the three optima and Deep Ensemble
even at all three. The behaviour of the MC Dropout method can be explained by the
tube-like shape of the uncertainty and the characteristics that it produces quite large
uncertainty at the samples itself. Therefore the acquisition function value at a point is
not greatly decreased by taking a sample there. For the other methods however taking
a sample always reduces the uncertainty to a big extent which leads to a large change
of the acquisition function.
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(a) Branin (b) Camelback

(c) Goldstein Price (d) Rosenbrock

(e) Perm

Figure 6.14: All method compared on their best budget for all functions. This
graphs show the mean and median regret curves for all function. For each
method the curve for the budget with the smallest final regret is shown
where mean and median do not have to have the same best budget. Legend
from (c) applies to all graphs.
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(a) NOMU (b) Gaussian process

(c) MC Dropout (d) Deep Ensemble

(e) pGP

Figure 6.15: Sampled points for the different methods on Branin. Each con-
tour graph displays all samples taken during the BO process for the given
method. The large crosses show the locations of the initial samples. The
small plus sign show where the BO decided to sample. The blue triangle
show where the true optima are located. The red circle indicates where
the BO proposes to sample next. The contour lines indicate the estimated
acquisition function.
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Estimator Methods

NOMU GP DE DO pGP

function µ M µ M µ M µ M µ M

Branin 2 2 1 1 2 2 4 5 1 2

Rosenbrock 2 2 3 4 1 1 2 3 3 5

Camelback 1 1 2 3 5 4 3 4 2 1

Perm 1 2 1 1 1 2 4 5 5 2

Goldstein Price 1 1 1 2 2 3 3 5 1 4

Table 6.6: Mean and median ranks of the methods per function. For each func-
tion the final regrets of the different estimators are ranked. The ranks based
on the mean are listed in the column µ. The ranks for the median are listed
in the column with header M .

6.5.4 Conclusions

The NOMU method produces top two ranked final regrets for all the two dimensional
synthetic functions tested indicating that it performs robustly well irrespective of the un-
derlying functions. This stands in contrast to the Deep Ensemble and the MC Dropout
method both of which depend a lot on the underlying function and thus end up perform-
ing worst for at least one of the functions at test. Especially the MC Dropout performs
rather bad on the two dimensional setting.
For the Gaussian process when used with the default configuration it can very well
happen that the BO gets stuck in a local optima when no dynamic C is applied to it.
Therefore when interested in the overall mean then using the Dynamic C adjustment is
beneficial even for the Gaussian process.
For functions that have multiple optima approaches like the Deep Ensemble and the
NOMU are able to identify multiple of the optima whereas the MC Dropout methods
only finds one.
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6.6 Multi-Dimensional Synthetic Functions

After exploring the two dimensional setting the logical next step is to explore even higher
dimensions. Thus, in this section the experiment is based on the five dimensional input
space. Like in the two dimensional setting the main goal it so observe the behaviour of
the methods in higher dimensions to identify key difference between the method when
the input dimensions are further increased.

6.6.1 Experiment Setup

Different Mean Width Budgets: In the previous experiment sequence the mean
width budget that was used, was 0.05 which is quite small. The reason for this was
that together with the dynamic C scaling the uncertainty scaling can still be increased
if needed to get out of a local optima. Using such a small mean width budget to begin
with however means that most of the Upper Bound acquisition function will depend on
the mean prediction and the uncertainty will have almost no importance in the decision
where to evaluate the function next. In this thesis however the goal is not only to compare
the quality of the mean prediction the subsequent use of it in the Bayesian optimization
another goal is to also assess the quality of the uncertainty prediction and its influence
in the Bayesian optimization. Therefore in addition to running the experiment as before
with a mean width budget 0.05 it is also run with a budget of 0.5 with the intention to
identify how the methods performance is influenced by the scaling of the uncertainty.

Mean Width Calculation: With increasing dimensions a grid based sampling for the
mean width calculation is no longer feasible since with a grid of reasonable resolution
the number of samples would just grow to fast. As a result another sampling method
is implemented. Instead of using grid based samples the Monte Carlo approach is used
which generates randome samples over the whole input space. Given these samples
which return the magnitude of the uncertainty which also represent half of the width
between the uncertainty bounds, the mean width can easily be calculated for the given
set of samples. Using this Monte Carlo approach it is possible to specify exactly how
many samples to take which allows to better control the run-time of the whole algorithm.
However it must be said that using the Monte Carlo approach it highly depends on the
number of samples how accurate the mean width calculation is. That being said, in this
case the mean width calculation is not highly critical as it is just used to get a rough
estimator for the scaling factor c of the uncertainty and since there is the dynamic C
approach also active it can correct any underestimation of the scaling factor c.

DIRECT optimizer: Similar to the mean width calculation the acquisition function
optimization has to be changed since using the Grid Search would need an enormous
amount of evaluations5 or a very large grid resolution where the first requires a lot of

5With the same grid resolution with 200 intervals per dimensions as in the two dimensional setting the
Grid Search would require 320 000 000 000 evaluations per acquisition function evaluation.
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computational resources and the later can no longer ensure that a reasonable global
optima is found. As a result the DIRECT optimization scheme is used which actively
samples new points to find out where to sample next. Therefore, this method requires
much less acquisition function evaluations and thus Gaussian process or network predic-
tions (Section 5.2.2).

Random Search Benchmark: Since in five dimensions the input space is so large
and very few points are sampled chances are high that the estimator models are not
able to make reasonable predictions and thus proposed samples resulting from the BO
reveal much information. So to assess whether the BO makes reasonable process the
Random Search algorithm is used as a benchmark. Random Search samples point
at random, eventually it will sample a point that evaluates to a higher function value and
thus makes progress and the regret decreases. Whenever a method performs equal or
worse than Random Search it would be beneficial to just sample the points randomly.
This can happen for example for optimization schemes which eventually get stuck in a
local optima.

6.6.2 Detailed Configuration

DIRECT configuration The DIRECT algorithm can be configured with some limits for
the number of evaluations or iterations. For this experiment the fallback limits of 20 000
evaluations or 6 000 iterations are used.

Monte Carlo Mean Width Sampling For the calculation of the mean width of the un-
certainty bounds the Monte Carlo Sampling is used with20 000 samples over which the
mean is calculated.

6.6.3 Results

Comparing the results from the experiment with 0.05 mean width budget with the results
using 0.5 as the mean width budget, then it is noticeable that in the later case most
methods perform worse. Sometimes, depending on the underlying function, one of the
methods produces drastically worse data than with a mean width of 0.05. This applies to
the Deep Ensemble method, the MC Dropout as well as the Gaussian process. The only
exception is the NOMU method for which the regret slightly increases for all underling
function but never really drastically.

Looking at Figure 6.16 it is noticeable that for the Perm function all the methods
produce results within the same regret magnitude. Also it stands out that even the
Random Search produced results which are similar. Consequently it seems that the
Perm function is not really solved by the methods or the function is so flat that there
are so many points close to the optima so that randomly selecting the samples it just as
good as following a certain strategies. As a result the Perm function is excluded from
the further analysis of the results.
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NOMU GP DE DO pGP random

mws budget 0.05 0.5 0.05 0.5 0.05 0.5 0.05 0.5

GFunction5D 2 2 5 9 5 5 1 2 5 10

Levy5D 1 1 8 4 3 4 6 8 6 10

(Perm5D) (4) (4) (1) (9) (6) (9) (1) (1) (3) (7)

Rosenbrock5D 1 2 2 5 1 9 2 5 5 9

Table 6.7: Ranks of the estimators per 5D function. This table lists all the ranks
of the different method for one function in a row. The regrets for the mean
width budgets 0.05 and 0.5 are combined into the same ranking. The pure
Gaussian process and the Random Search do not depend on the mean with
therefore ranks from 1 to 10 are possible. As the Perm function is excluded
from further analysis its values are put into brackets.

(a) mean width budget 0.05 (b) mean width budget 0.5

Figure 6.16: Mean and median regret curve - Perm. This graphs display the
mean (solid lines) and median (dashed lines) final regret curve including
confidence interval (colored area) for the different estimators. In (a) the
results for a mean width budget of 0.05 are displayed and in (b) the ones
for a budget of 0.5. Both graphs depict the situation for the Perm function

When comparing the remaining three methods, G-Function, Levy and Rosenbrock
then one can notice that similarly to the two dimensional case the NOMU method
consistently produces good results being ranked first twice. Only for the G-Function
for which all of the methods produce a rather large regret, the MC Dropout method
achieves better results. Looking at Table 6.7 shows the effect that for all methods the
variant with 0.05 mean width got a better ranking. Only exception is the Gaussian
process with dynamic C for the Levy function.
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6.6.4 Conclusions

This experiment showed that similar to the two dimensional case with five input di-
mensions the NOMU method is able to produce among others the lowest regret as long
the the BO approach in general is superior to the random search. The results also con-
solidate the findings of previous experiment showing that the NOMU method is more
robust on the changing of the mean width budget and also generalizes best for different
underlying true functions.
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Conclusions

This thesis examines the state-of-the-art model uncertainty predicting neural network
estimators in the context of Bayesian optimization tasks. For the setting where the
target function has one input dimension the results of this work show that the Gaussian
process achieves outperforms all neural network based estimators when each method
uses its best mean width budget. However for all of the estimators it was noticed that
depending on the set of starting samples the Bayesian optimization algorithm can get
stuck in local optima. With the goal of making the process more robust to the choice
of the starting sample sets, the calibration technique of Dynamic C was introduced.
This mechanism checks if the Bayesian optimization tries to exploit a region by deter-
mining if the proposed sample lies within an ε-region around already observed samples.
In this case the algorithm is forced to explore another region. A dedicated experiment
compared a linear and a exponential decay strategy for the ε-region and showed that
the exponential decay performs better.

Further experiments explored the behaviour of the different estimators when applied to
Bayesian optimization tasks in higher input dimensions. It identified that the neural
network based methods were no longer inferior to the Gaussian process in two and five
dimensions and that the NOMU method ranked consistently, irrespective of the under-
lying synthetic function, among the top two methods.

Over the course of the various experiments several observations about characteristics of
the different estimators were made. It showed that the Deep ensemble method by default
estimates uncertainty with a very small magnitude in comparison to the other methods.
For the MC Dropout method is was observed that the uncertainty bounds lie like a tube
around the mean prediction with rather large uncertainties even at already observed
points. This contrasts the shape of the uncertainty bounds of the other methods which
look more like arches from one sample to the next sample 1.

A user friendly and highly configurable framework for running Bayesian optimization was
developed and used to perform all experiments. The framework was developed in the

1In the noiseless case which is considered here, taking a sample should give an accurate result without
any uncertainty, thus small or zero uncertainty at observed points are favorable.
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programming language Python and focuses on modularity and extensibility to facilitate
future extensions and modifications to certain sub processes. For an easy distribution
the framework can be packaged as a Python library.

The Mixed Integer Programming Problem for solving a neural network to find its optima
and the respective input was adjusted to fit the network structure of the NOMU method.
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Future Work

In this thesis various different synthetic functions were tested allowing a general assess-
ment of the different estimators. One possible way of extending this work is to test
more function and function classes with the goal to characterize in more details how
they affects the different methods.

In this thesis the application of the Mixed Integer Programming Solver as a method of
acquisition function optimization for the NOMU methods was introduced but never used
in a proper experimental setup. Thus one natural extension to this work is to explore the
implications of using an MIP solver to optimize the acquisition function for the NOMU
method and possibly other methods. As mentioned in this work even the DIRECT op-
timizer suffers the curse of dimensionality and thus the MIP optimizer could be used as
the base for experiments in even higher dimension which previously were considered as
infeasible for Bayesian optimization using the Gaussian process scheme.

This thesis showed that the different neural network estimators produce uncertainty
estimation of very different scales. Therefore another interesting topic for further inves-
tigation is how to derive a reasonable scale for the uncertainty, how exactly does the scale
itself influences the Bayesian optimization performance and which scales should be used
in practice for real world problems. One can transition into the topic of hyperparameter
optimization as the scale of the uncertainty can also be seen as a hyperparameter. There
are multiple hyperparameters that can be configured for all of the neural network based
estimators as well as the adaptions presented in this thesis. For practice it would be
interesting to optimize these parameters with the goal of further improve the Bayesian
optimization results.

This thesis assessed the application of neural networks for Bayesian optimization exclu-
sively on synthetic functions. Presenting practical solutions to the integration of data
noise and providing an extension to real world data are possible extensions to this work.
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Appendix

The following additional materials presents complementing graphs to the figures pre-
viously shown. This additional material section is structured in the same way as the
experimental section (Section 6). Only exception is that the additional material for
Section 6.3 and Section 6.4 are combined into one section presenting all results to the
one dimensional experiments. Subsequent to the sections extending on the experimental
work, in section A.4 important information about the implementation part of this work
is given together with the overall structure of the code base and its main characteristics.

A.1 One Dimensional Synthetic Functions Experiment

A.1.1 Preparatory Work

83



84 APPENDIX A. APPENDIX

F
o
rr

e
st

e
r

F
ig

u
re

A
.1

:
B

O
ru

n
fo

r
th

e
N

O
M

U
a
n

d
G

P
m

e
th

o
d

,
in

st
an

ce
N

r.
8,

N
O

M
U

(l
ef

t)
a
n

d
G

a
u

ss
ia

n
p

ro
ce

ss
(r

ig
h
t)

,
fi

rs
t

th
re

e
st

ep
s

a
n

d
la

st
st

ep

84



A.1. ONE DIMENSIONAL SYNTHETIC FUNCTIONS EXPERIMENT 85

F
o
rr

e
st

e
r

F
ig

u
re

A
.2

:
B

O
ru

n
fo

r
th

e
D

O
a
n

d
D

E
m

e
th

o
d

,
in

st
an

ce
N

r.
8,

M
C

D
ro

p
o
u

t
(l

ef
t)

a
n

d
D

ee
p

E
n

se
m

b
le

s
(r

ig
h
t)

,
fi

rs
t

th
re

e
st

ep
s

an
d

la
st

st
ep

85



86 APPENDIX A. APPENDIX

A.1.2 Mean Width Budget Effects

(a) NOMU (b) Gaussian process

(c) MC Dropout (d) Deep Ensembles

Figure A.3: 1D Forrester, regret curve for different mean width budgets per
method. Each plot depicts one curve of the mean regret over 100 instances
for each of the mean width budgets (0.1, 0.25, 0.5, 1.0, 2.0). The colored
area shows the bootstrapped 95% confidence interval for the mean and the
dashed line depicts the median over the set of instances. The graph starts
at step 0 where the regret of the starting sample set of 8 samples is shown.
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(a) NOMU (b) Gaussian process

(c) MC Dropout (d) Deep Ensembles

Figure A.4: 1D Levy, regret curve for different mean width budgets per
method. Each plot depicts one curve of the mean regret over 100 instances
for each of the mean width budgets (0.1,0.25,0.5,1.0,2.0). The colored area
shows the bootstrapped 95% confidence interval for the mean and the dashed
line depicts the median over the set of instances. The graph starts at step 0
where the regret of the starting sample set of 8 samples is shown.
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(a) NOMU (b) Gaussian process

(c) MC Dropout (d) Deep Ensembles

Figure A.5: 1D SinOne, regret curve for different mean width budgets per
method. Each plot depicts one curve of the mean regret over 100 instances
for each of the mean width budgets (0.1, 0.25, 0.5, 1.0, 2.0). The colored
area shows the bootstrapped 95% confidence interval for the mean and the
dashed line depicts the median over the set of instances. The graph starts
at step 0 where the regret of the starting sample set of 8 samples is shown.
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Figure A.6: Mean and median regret curve for all estimator with their best
budget on Levy. For each estimator the best mean width budget is selected
for the mean and the median the respective regret curves are displayed. For
the mean the budgets are selected by lowest upper confidence bound of
the final regrets. The selected budgets are indicated in the legend after the
method identifiers by the numbers in the bracket where the first one displays
the best budget for the mean and the second one the best for the median.
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Figure A.7: Mean and median regret curve for all estimator with their best
budget on SinOne. For each estimator the best mean width budget is
selected for the mean and the median the respective regret curves are dis-
played. For the mean the budgets are selected by lowest upper confidence
bound of the final regrets. The selected budgets are indicated in the legend
after the method identifiers by the numbers in the bracket where the first
one displays the best budget for the mean and the second one the best for
the median.
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Mean Width Budget

f estimator 0.1 0.25 0.5 1.0 2.0

F
or

re
st

er

NOMU 6.70× 10−6 2 8.25× 10−7 1 6.70× 10−6 2 6.70× 10−6 2 6.27× 10−5 3

GP 8.25× 10−7 1 8.25× 10−7 1 8.25× 10−7 1 8.25× 10−7 1 8.25× 10−7 1

DE 8.25× 10−7 1 6.70× 10−6 2 2.82× 10−5 3 1.40× 10−4 4 9.34× 10−4 5

DO 4.98× 10−5 1 6.27× 10−5 2 4.98× 10−5 1 4.98× 10−5 1 2.23× 10−4 3

L
ev

y

NOMU 3.75× 10−5 2 2.09× 10−5 1 2.09× 10−5 1 1.04× 10−4 4 5.44× 10−5 3

GP 1.76× 10−6 1 1.76× 10−6 1 1.76× 10−6 1 1.76× 10−6 1 2.20× 10−6 2

DE 8.73× 10−4 3 1.41× 10−4 1 4.98× 10−4 2 4.55× 10−3 5 1.60× 10−3 4

DO 2.56× 10−5 1 4.25× 10−5 2 4.25× 10−5 2 5.66× 10−5 3 1.04× 10−4 4

S
in

O
n

e

NOMU 7.90× 10−4 3 5.45× 10−4 1 5.45× 10−4 1 6.69× 10−4 2 1.38× 10−3 4

GP 1.80× 10−5 1 1.80× 10−5 1 1.80× 10−5 1 1.80× 10−5 1 1.80× 10−5 1

DE 3.07× 10−3 4 7.86× 10−4 2 7.29× 10−4 1 7.01× 10−3 5 2.65× 10−3 3

DO 2.76× 10−3 5 3.00× 10−4 1 7.90× 10−4 2 1.62× 10−3 4 1.09× 10−3 3

Table A.1: C values per method and mean width budget. This table shows the
mean scaling factor c derived from the estimated uncertainty and the give
mean width budget per estimator method. These c-values have then been
used throughout the whole process to scale the uncertainty.
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(a) NOMU (b) Gaussian process

(c) MC Dropout (d) Deep Ensemble

Figure A.8: Forrester - Final regret distribution for all mean width budgets
method. For each mean width budget the distribution of the final regrets
is displayed as a box plot where the box represents the interquartile range.
The solid black line represents the median and the black dots show the
outliers. For the outliers the instance number is listed top left ordered
by size beginning with the largest regret. All these results represent the
situation on the Forrester function
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(a) NOMU (b) GP

(c) DO (d) DE

Figure A.9: Levy - Final regret distribution for all mean width budgets
method. For each mean width budget the distribution of the final re-
grets is displayed as a box plot where the box represents the interquartile
range. The solid black line represents the median and the black dots show
the outliers. For the outliers the instance number is listed top left ordered
by size beginning with the largest regret. All these results represent the
situation on the Levy function
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(a) NOMU (b) GP

(c) DO (d) DE

Figure A.10: SinOne - Final regret distribution for all mean width budgets
method. For each mean width budget the distribution of the final regrets
is displayed as a box plot where the box represents the interquartile range.
The solid black line represents the median and the black dots show the
outliers. For the outliers the instance number is listed top left ordered
by size beginning with the largest regret. All these results represent the
situation on the SinOne function
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A.1.3 Dynamic C strategies Comparisons

(a) without dynamic C (b) exponential dynamic C (without padding)

(c) exponential dynamic C (with padding) (d) exponential dynamic C (with padding)

Figure A.12: Forrester - All methods with best budget, different Dynamic C
approaches. Each graph displays one regret curve per method. For each
methods the budget which produces the smallest regrets are selected, indi-
vidually for mean and median.
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(a) without dynamic C (b) exponential dynamic C (without padding)

(c) exponential dynamic C (with padding) (d) exponential dynamic C (with padding)

Figure A.13: Levy - All methods with best budget, different Dynamic C ap-
proaches. Each graph displays one regret curve per method. For each
methods the budget which produces the smallest regrets are selected, indi-
vidually for mean and median.
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(a) without dynamic C (b) exponential dynamic C (without padding)

(c) exponential dynamic C (with padding) (d) exponential dynamic C (with padding)

Figure A.14: SinOne - All methods with best budget, different Dynamic C ap-
proaches. Each graph displays one regret curve per method. For each
methods the budget which produces the smallest regrets are selected, indi-
vidually for mean and median.
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Mean Width Budget

0.1 0.25 0.5 1.0 2.0

f variant µ M µ M µ M µ M µ M

L
ev

y

N
O

M
U

no dc 1 10 1 6 1 6 3 16 3 13

lin. 1 15 1 18 1 17 1 19 1 20

lin. pad. 1 5 1 3 1 11 1 6 1 12

exp. pad. 1 1 1 1 1 4 1 6 1 14

G
P

no dc 1 1 1 1 1 1 1 1 1 11

lin. 5 14 1 18 1 15 1 19 10 20

lin. pad. 1 1 1 1 1 1 1 11 10 16

exp. pad. 1 1 1 1 1 1 3 13 12 16

D
E

no dc 1 7 1 2 1 6 1 18 4 12

lin. 1 4 1 13 1 9 1 15 13 20

lin. pad. 1 5 1 10 1 14 1 15 5 19

exp. pad. 1 1 1 3 1 8 1 11 3 15

D
O

no dc 1 1 1 2 1 2 1 7 1 10

lin. 1 17 1 14 1 15 1 13 1 20

lin. pad. 1 5 1 10 1 19 3 15 1 18

exp. pad. 1 5 1 4 1 10 1 9 1 7

Table A.2: Levy - Rank table for the different budgets per estimator and Dy-
namic C variant. For each estimator and each Dynamic C variant the final
regrets for the different mean width budgets are ranked according to the
ranking scheme which results in the ranks indicated in the column µ. Using
a normal ranking where lowest equals best also the medians are ranked in
the column with header M . The whole table presents results for the Levy
function. ”no dc” means that there in no Dynamic C however mean width
scaling is still present. ”lin.” means that the ε decay linearly. ”lin. pad.”
additionally has padding added to the strategy. The same goes for ”exp.
pad.” where however the ε decays exponentially.
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Mean Width Budget

0.1 0.25 0.5 1.0 2.0

f variant µ M µ M µ M µ M µ M

S
in

O
n

e

N
O

M
U

no dc 2 13 2 6 1 6 2 8 1 16

lin. 1 20 1 18 1 17 1 15 1 19

lin. pad. 1 3 1 8 1 8 1 8 1 12

exp. pad. 1 14 1 1 1 2 1 5 1 3

G
P

no dc 17 1 17 1 16 1 16 1 1 1

lin. 9 16 10 16 11 16 11 16 11 20

lin. pad. 1 1 1 1 1 1 1 1 1 1

exp. pad. 1 1 1 1 1 1 1 1 1 1

D
E

no dc 1 15 1 6 1 4 1 17 1 13

lin. 1 12 1 14 1 9 1 20 1 18

lin. pad. 1 4 1 3 1 11 1 10 1 19

exp. pad. 1 7 1 1 1 1 1 8 1 16

D
O

no dc 1 9 1 1 1 5 1 8 1 7

lin. 1 14 1 15 1 17 1 18 1 20

lin. pad. 1 12 1 10 1 13 1 16 1 19

exp. pad. 1 2 1 3 1 4 1 6 1 10

Table A.3: SinOne - Rank table for the different budgets per estimator and
Dynamic C variant. For each estimator and each Dynamic C variant the
final regrets for the different mean width budgets are ranked according to the
ranking scheme which results in the ranks indicated in the column µ. Using
a normal ranking where lowest equals best also the medians are ranked in
the column with header M . The whole table presents results for the SinOne
function. ”no dc” means that there in no Dynamic C however mean width
scaling is still present. ”lin.” means that the ε decay linearly. ”lin. pad.”
additionally has padding added to the strategy. The same goes for ”exp.
pad.” where however the ε decays exponentially.
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Mean Width Budget

0.1 0.25 0.5 1.0 2.0

f variant µ M µ M µ M µ M µ M

F
or

re
st

er

N
O

M
U

UB: no dc 1 4 1 1 1 4 2 4 7 28

UB: lin. 16 30 13 30 14 33 18 36 19 36

UB: lin. pad. 1 4 2 4 5 4 7 21 23 40

UB: exp. pad. 1 1 1 4 1 4 2 18 12 33

EI: no dc 1 4 1 4 1 4 9 23 11 23

Ei: lin. 9 28 7 26 11 30 18 35 26 39

EI: lin. pad. 2 4 7 19 5 19 9 23 18 36

EI: exp. pad. 1 1 1 4 1 4 9 21 17 26

G
P

UB: no dc 1 1 1 1 1 1 1 1 8 1

UB: lin. 27 31 27 36 28 36 32 39 32 40

UB: lin. pad. 8 1 10 1 8 1 20 31 26 31

UB: exp. pad. 8 1 1 1 10 1 10 1 20 31

EI: no dc 1 1 1 1 1 1 1 1 1 1

Ei: lin. 26 29 22 1 29 35 26 29 30 36

EI: lin. pad. 8 1 1 1 10 1 1 1 10 1

EI: exp. pad. 8 1 1 1 10 1 10 1 13 1

D
E

UB: no dc 1 1 1 3 3 11 1 24 19 40

UB: lin. 3 18 5 24 5 28 1 27 18 36

UB: lin. pad. 1 9 1 16 5 23 7 24 18 38

UB: exp. pad. 1 2 1 3 1 3 5 18 12 37

EI: no dc 1 8 1 3 1 12 3 18 10 32

Ei: lin. 3 17 8 29 1 18 12 34 19 39

EI: lin. pad. 1 12 1 12 7 18 9 31 17 35

EI: exp. pad. 1 3 1 9 5 12 7 30 11 33

D
O

UB: no dc 1 2 1 5 1 2 1 2 1 21

UB: lin. 1 18 1 21 1 30 1 33 1 40

UB: lin. pad. 1 19 1 32 1 21 1 39 1 34

UB: exp. pad. 1 10 1 16 1 7 1 20 1 21

EI: no dc 1 1 1 10 1 5 1 14 1 25

Ei: lin. 1 25 1 35 1 36 1 38 1 36

EI: lin. pad. 1 10 1 27 1 28 1 29 1 31

EI: exp. pad. 1 7 1 10 1 17 1 7 1 14

Table A.4: Rank table - Upper Bound and Expected Improvement. Ranks per
method over all Dynamic C variants for both acquisition functions. All results
refer to the Forrester function.

101



102 APPENDIX A. APPENDIX

(a) linear dynamic C with padding (b) exp dynamic C with padding

Figure A.15: Comparison of C doubling between linear and exponential Dy-
namic C. The solid lines depict how often the scaling factor c was doubled
during the process as a mean over the different instances. The dashed lines
show the median of the same data. Both graphs show the situation for the
Forrester function.

A.2 Two Dimensional Synthetic Functions Experiment

Estimator Methods

function NOMU GP DE DO pGP

Branin 2.30 · 10−5 2.36 · 10−6 2.52 · 10−5 2.83 · 10−4 2.66 · 10−4

±9.40 · 10−6 ±1.35 · 10−6 ±8.63 · 10−6 ±1.21 · 10−4 ±4.91 · 10−4

Rosenbrock 2.54 · 10−6 5.47 · 10−6 1.08 · 10−6 6.18 · 10−6 7.55 · 10−6

±6.53 · 10−7 ±2.12 · 10−6 ±3.62 · 10−7 ±3.27 · 10−6 ±2.58 · 10−6

Camelback 1.33 · 10−5 4.00 · 10−5 7.57 · 10−4 1.02 · 10−4 8.40 · 10−5

±2.89 · 10−6 ±1.14 · 10−5 ±3.73 · 10−4 ±3.86 · 10−5 ±5.44 · 10−5

Perm 1.73 · 10−5 1.95 · 10−5 2.16 · 10−5 1.60 · 10−4 7.77 · 10−4

±8.10 · 10−6 ±9.01 · 10−6 ±8.70 · 10−6 ±7.19 · 10−5 ±4.85 · 10−4

Goldstein Price 1.42 · 10−4 1.16 · 10−4 2.19 · 10−4 3.44 · 10−4 9.58 · 10−5

±7.47 · 10−5 ±5.48 · 10−5 ±8.57 · 10−5 ±1.39 · 10−4 ±3.38 · 10−5

Table A.5: Mean final regret per methods and function. This table lists for all
methods their mean final regret (top row) and the 95% confidence interval
(bottom row) per function.
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(a) Branin (b) Camelback

(c) Goldstein Price (d) Rosenbrock

(e) Perm

Figure A.16: Final regret distribution for all methods per function. For each
mean width budget the distribution of the final regrets is displayed as a
box plot where the box represents the interquartile range. The solid black
line represents the median and the black dots show the outliers. For the
outliers the instance number is listed top left ordered by size beginning
with the largest regret.
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Branin

Figure A.17: BO run for the NOMU method, run 30 First 9 and last 6 steps
during the Bayesian optimization of the Branin function using NOMU
with a mean width budget of 0.05.
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Forrester

Figure A.18: BO run for the Gaussian process, run 30. First 9 and last 6 steps
during the Bayesian optimization of the Branin function using Gaussian
process with a mean width budget of 0.05.
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Forrester

Figure A.19: BO run for the MC Dropout method, run 30. First 9 and last 6
steps during the Bayesian optimization of the Branin function using MC
Dropout method with a mean width budget of 0.05.
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Forrester

Figure A.20: BO run for the Deep Ensemble method, run 30. First 9 and last 6
steps during the Bayesian optimization of the Branin function using Deep
Ensemble method with a mean width budget of 0.05.
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Forrester

Figure A.21: BO run for the pure Gaussian process, run 30. First 9 and last 6
steps during the Bayesian optimization of the Branin function using the
pure Gaussian process with a mean width budget of 0.05.
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(a) NOMU (b) Gaussian process

(c) MC Dropout (d) Deep Ensembles

Figure A.22: Final step of BO on Camelback function. Large crosses indicate the
starting samples and the plus signs show where it was sampled during the
process. The blue triangle indicate the location of the optima and the red
circle shows where the BO proposes to sample next. The contour displays
the shape of the acquisition function.
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(a) NOMU (b) Gaussian process

(c) MC Dropout (d) Deep Ensembles

Figure A.23: Final step of BO on Goldstein Price function. Large crosses indicate
the starting samples and the plus signs show where it was sampled during
the process. The blue triangle indicate the location of the optima and
the red circle shows where the BO proposes to sample next. The contour
displays the shape of the acquisition function.
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(a) NOMU (b) Gaussian process

(c) MC Dropout (d) Deep Ensembles

Figure A.24: Final step of BO on Rosenbrock function. Large crosses indicate the
starting samples and the plus signs show where it was sampled during the
process. The blue triangle indicate the location of the optima and the red
circle shows where the BO proposes to sample next. The contour displays
the shape of the acquisition function.
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A.3 Multi-Dimensional Synthetic Functions Experiment

(a) mean width budget 0.05 (b) mean width budget 0.5

Figure A.25: Mean and median regret curve - G-function. This graphs display the
mean (solid lines) and median (dashed lines) final regret curve including
confidence interval (colored area) for the different estimators. In (a) the
results for a mean width budget of 0.05 are displayed and in (b) the ones
for a budget of 0.5. Both graphs depict the situation for the G-function
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(a) mean width budget 0.05 (b) mean width budget 0.5

Figure A.26: Mean and median regret curve - Levy. This graphs display the mean
(solid lines) and median (dashed lines) final regret curve including confi-
dence interval (colored area) for the different estimators. In (a) the results
for a mean width budget of 0.05 are displayed and in (b) the ones for a
budget of 0.5. Both graphs depict the situation for the Levy function

(a) mean width budget 0.05 (b) mean width budget 0.5

Figure A.27: Mean and median regret curve - Rosenbrock. This graphs display
the mean (solid lines) and median (dashed lines) final regret curve including
confidence interval (colored area) for the different estimators. In (a) the
results for a mean width budget of 0.05 are displayed and in (b) the ones
for a budget of 0.5. Both graphs depict the situation for the Rosenbrock
function
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A.4 Implementation

A.4.1 General Structure

The implementation for this thesis is two fold. First, there is the core logic which is
responsible for example for the different estimator methods, the acquisition functions
or the Bayesian optimization algorithm. This core logic is implemented in a package
structure which can be built into a ”pip”-library. Second, there are all the different
scripts which are needed to actually run the experiments or to analyze the results.
These scripts are implemented as stand-alone Python-scripts. As a result the process
of running and analyzing an experiments starts with defining the parameters to run the
experiment with followed by running the executing script. The result of the run are
saved to files. These results can then be enhanced by calculating further metrics using
another script. Finally the results can be analyzed by plotting or listing the enhanced
data using further scripts.

A.4.2 Design Decisions

The implementation of the core logic is highly modularized making use in inheritance to
abstract as much logic as possible so that it can be recycled for subsequent approached
with slightly different implementations. For structures which can be modified repeatedly
like the acquisition functions which can be extended with mean width scaling or the
kernels for the Gaussian process which can be combined the decorator pattern was used
to allow a layered modification approach. For an easy experimental setup for all core
modules interpreters were written so that the parameter for the sub processes can be
specified using a single configuration file.

A.4.3 Testing

For the core logic of the package over 200 automated test were written to ensure that
the code is actually executable and runs correctly.

114



List of Figures

4.1 NOMU network architecture . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Neural network node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 NOMU elastic wire intuition . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.1 Illustration of the DIRECT algorithm . . . . . . . . . . . . . . . . . . . . 32
5.2 Visual example of a MIP problem . . . . . . . . . . . . . . . . . . . . . . . 33
5.3 Illustration of a neural network node . . . . . . . . . . . . . . . . . . . . . 34

6.1 Possible ranking orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.2 Estimates in step 0 across the different methods on Forrester . . . . . . . 42
6.3 1D synthetic benchmark functions . . . . . . . . . . . . . . . . . . . . . . 44
6.4 Mean and Median regret curve for NOMU on Forrester for different budgets 47
6.5 Mean and Median regret curve for all estimators with their best budget

on Forrester . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.6 Final regret distribution over the different instances, NOMU, Forrester . . 51
6.7 First step NOMU on Forrester showing the NOMU-activation effect . . . 51
6.8 MC dropout estimates during last step on Levy and SinOne . . . . . . . . 54
6.9 Forrester - all methods with best budget, different Dynamic C approaches 58
6.10 Final regret distribution with and without Dynamic C for NOMU on

Forrester . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.11 Differences of estimations for NOMU depending on Dynamic C variant . . 61
6.12 2D synthetic benchmark functions . . . . . . . . . . . . . . . . . . . . . . 65
6.13 Number of time Dynamic C is active . . . . . . . . . . . . . . . . . . . . . 67
6.14 All method compared on their best budget for all functions . . . . . . . . 68
6.15 Sampled points for the different methods on Branin . . . . . . . . . . . . 69
6.16 Mean and median regret curve - Perm . . . . . . . . . . . . . . . . . . . . 73

A.1 BO run for the NOMU and GP method . . . . . . . . . . . . . . . . . . . 84
A.2 BO run for the DO and DE method . . . . . . . . . . . . . . . . . . . . . 85
A.3 1D Forrester, regret curve for different mean width budgets per method . 86
A.4 1D Levy, regret curve for different mean width budgets per method . . . . 87
A.5 1D SinOne, regret curve for different mean width budgets per method . . 88
A.6 Mean and median regret curve for all estimator with their best budget on

Levy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

115



116 List of Figures

A.7 Mean and median regret curve for all estimator with their best budget on
SinOne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A.8 Forrester - Final regret distribution for all mean width budgets method . 92
A.9 Levy - Final regret distribution for all mean width budgets method . . . . 93
A.10 SinOne - Final regret distribution for all mean width budgets method . . 94
A.11 BO run for the NOMU method, run 24 . . . . . . . . . . . . . . . . . . . . 95
A.12 Forrester - All methods with best budget, different Dynamic C approaches 96
A.13 Levy - All methods with best budget, different Dynamic C approaches . . 97
A.14 SinOne - All methods with best budget, different Dynamic C approaches . 98
A.15 Comparison of C doubling between linear and exponential Dynamic C . . 102
A.16 Final regret distribution for all methods per function . . . . . . . . . . . . 103
A.17 BO run for the NOMU method, run 30 . . . . . . . . . . . . . . . . . . . . 104
A.18 BO run for the Gaussian process, run 30 . . . . . . . . . . . . . . . . . . . 105
A.19 BO run for the MC Dropout method, run 30 . . . . . . . . . . . . . . . . 106
A.20 BO run for the Deep Ensemble method, run 30 . . . . . . . . . . . . . . . 107
A.21 BO run for the pure Gaussian process, run 30 . . . . . . . . . . . . . . . . 108
A.22 Final step of BO on Camelback function . . . . . . . . . . . . . . . . . . . 109
A.23 Final step of BO on Goldstein Price function . . . . . . . . . . . . . . . . 110
A.24 Final step of BO on Rosenbrock function . . . . . . . . . . . . . . . . . . 111
A.25 Mean and median regret curve - G-function . . . . . . . . . . . . . . . . . 112
A.26 Mean and median regret curve - Levy . . . . . . . . . . . . . . . . . . . . 113
A.27 Mean and median regret curve - Rosenbrock . . . . . . . . . . . . . . . . . 113

116



List of Tables

6.1 Rank table for the different budgets per estimator in 1D . . . . . . . . . . 48
6.2 Full table of regret values . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.3 C values per method and mean width budget . . . . . . . . . . . . . . . . 53
6.4 Final regrets for NOMU on Forrester for the different Dynamic C strategies 59
6.5 Rank table for the different budgets per estimator and Dynamic C variant 63
6.6 Mean and median ranks of the methods per function . . . . . . . . . . . . 70
6.7 Ranks of the estimators per 5D function . . . . . . . . . . . . . . . . . . . 73

A.1 C values per method and mean width budget . . . . . . . . . . . . . . . . 91
A.2 Levy - Rank table for the different budgets per estimator and Dynamic

C variant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
A.3 SinOne - Rank table for the different budgets per estimator and Dynamic

C variant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
A.4 Rank table - Upper Bound and Expected Improvement . . . . . . . . . . . 101
A.5 Mean final regret per methods and function . . . . . . . . . . . . . . . . . 102

117


